Investigating YOLO Models for Rice Seed Classification

Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 181-192.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Phan, Thi Thu Hong, Ho, Huu Tuong, Hoang, Thao Nhien
Format: Bài viết
Langue:English
Publié: Springer Nature 2023
Sujets:
Accès en ligne:https://link.springer.com/chapter/10.1007/978-3-031-36886-8_15
http://elib.vku.udn.vn/handle/123456789/2735
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Thư viện lưu trữ: Trường Đại học Công nghệ Thông tin và Truyền thông Việt Hàn - Đại học Đà Nẵng
id oai:elib.vku.udn.vn:123456789-2735
record_format dspace
spelling oai:elib.vku.udn.vn:123456789-27352023-09-26T01:58:37Z Investigating YOLO Models for Rice Seed Classification Phan, Thi Thu Hong Ho, Huu Tuong Hoang, Thao Nhien Rice seed classification Deep Learning YOLOv5 YOLOv6 YOLOv7 Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 181-192. Rice is an important staple food over the world. The purity of rice seed is one of the main factors affecting rice quality and yield. Traditional methods of assessing the purity of rice varieties depend on the decision of human technicians/experts. This work requires a considerable amount of time and cost as well as can lead to unreliable results. To overcome these problems, this study investigates YOLO models for the automated classification of rice varieties. Experiments on an image dataset of six popular rice varieties in Vietnam demonstrate that the YOLOv5 model outperforms the other YOLO variants in both accuracy and time of training model. 2023-09-26T01:58:29Z 2023-09-26T01:58:29Z 2023-07 Working Paper 978-3-031-36886-8 https://link.springer.com/chapter/10.1007/978-3-031-36886-8_15 http://elib.vku.udn.vn/handle/123456789/2735 en application/pdf Springer Nature
institution Trường Đại học Công nghệ Thông tin và Truyền thông Việt Hàn - Đại học Đà Nẵng
collection DSpace
language English
topic Rice seed classification
Deep Learning
YOLOv5
YOLOv6
YOLOv7
spellingShingle Rice seed classification
Deep Learning
YOLOv5
YOLOv6
YOLOv7
Phan, Thi Thu Hong
Ho, Huu Tuong
Hoang, Thao Nhien
Investigating YOLO Models for Rice Seed Classification
description Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 181-192.
format Working Paper
author Phan, Thi Thu Hong
Ho, Huu Tuong
Hoang, Thao Nhien
author_facet Phan, Thi Thu Hong
Ho, Huu Tuong
Hoang, Thao Nhien
author_sort Phan, Thi Thu Hong
title Investigating YOLO Models for Rice Seed Classification
title_short Investigating YOLO Models for Rice Seed Classification
title_full Investigating YOLO Models for Rice Seed Classification
title_fullStr Investigating YOLO Models for Rice Seed Classification
title_full_unstemmed Investigating YOLO Models for Rice Seed Classification
title_sort investigating yolo models for rice seed classification
publisher Springer Nature
publishDate 2023
url https://link.springer.com/chapter/10.1007/978-3-031-36886-8_15
http://elib.vku.udn.vn/handle/123456789/2735
_version_ 1849204703595855872