Investigating YOLO Models for Rice Seed Classification
Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 181-192.
保存先:
| 主要な著者: | , , |
|---|---|
| フォーマット: | Bài viết |
| 言語: | English |
| 出版事項: |
Springer Nature
2023
|
| 主題: | |
| オンライン・アクセス: | https://link.springer.com/chapter/10.1007/978-3-031-36886-8_15 http://elib.vku.udn.vn/handle/123456789/2735 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
| Thư viện lưu trữ: | Trường Đại học Công nghệ Thông tin và Truyền thông Việt Hàn - Đại học Đà Nẵng |
|---|
| id |
oai:elib.vku.udn.vn:123456789-2735 |
|---|---|
| record_format |
dspace |
| spelling |
oai:elib.vku.udn.vn:123456789-27352023-09-26T01:58:37Z Investigating YOLO Models for Rice Seed Classification Phan, Thi Thu Hong Ho, Huu Tuong Hoang, Thao Nhien Rice seed classification Deep Learning YOLOv5 YOLOv6 YOLOv7 Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 181-192. Rice is an important staple food over the world. The purity of rice seed is one of the main factors affecting rice quality and yield. Traditional methods of assessing the purity of rice varieties depend on the decision of human technicians/experts. This work requires a considerable amount of time and cost as well as can lead to unreliable results. To overcome these problems, this study investigates YOLO models for the automated classification of rice varieties. Experiments on an image dataset of six popular rice varieties in Vietnam demonstrate that the YOLOv5 model outperforms the other YOLO variants in both accuracy and time of training model. 2023-09-26T01:58:29Z 2023-09-26T01:58:29Z 2023-07 Working Paper 978-3-031-36886-8 https://link.springer.com/chapter/10.1007/978-3-031-36886-8_15 http://elib.vku.udn.vn/handle/123456789/2735 en application/pdf Springer Nature |
| institution |
Trường Đại học Công nghệ Thông tin và Truyền thông Việt Hàn - Đại học Đà Nẵng |
| collection |
DSpace |
| language |
English |
| topic |
Rice seed classification Deep Learning YOLOv5 YOLOv6 YOLOv7 |
| spellingShingle |
Rice seed classification Deep Learning YOLOv5 YOLOv6 YOLOv7 Phan, Thi Thu Hong Ho, Huu Tuong Hoang, Thao Nhien Investigating YOLO Models for Rice Seed Classification |
| description |
Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 181-192. |
| format |
Working Paper |
| author |
Phan, Thi Thu Hong Ho, Huu Tuong Hoang, Thao Nhien |
| author_facet |
Phan, Thi Thu Hong Ho, Huu Tuong Hoang, Thao Nhien |
| author_sort |
Phan, Thi Thu Hong |
| title |
Investigating YOLO Models for Rice Seed Classification |
| title_short |
Investigating YOLO Models for Rice Seed Classification |
| title_full |
Investigating YOLO Models for Rice Seed Classification |
| title_fullStr |
Investigating YOLO Models for Rice Seed Classification |
| title_full_unstemmed |
Investigating YOLO Models for Rice Seed Classification |
| title_sort |
investigating yolo models for rice seed classification |
| publisher |
Springer Nature |
| publishDate |
2023 |
| url |
https://link.springer.com/chapter/10.1007/978-3-031-36886-8_15 http://elib.vku.udn.vn/handle/123456789/2735 |
| _version_ |
1849204703595855872 |