A Rich High-Order Mutation Testing Dataset for Software Fortification
Journal on Information Technologies & Communications; Vol 2025 No 1; pp: 19-27
Đã lưu trong:
| Những tác giả chính: | Do, Van Nho, Tran, Giang T.C, Nguyen, Duc Thuan, Nguyen, Thi Ngoc Anh, Nguyen, Quang Vu, Nguyen, Thanh Binh |
|---|---|
| Định dạng: | Bài viết |
| Ngôn ngữ: | English |
| Được phát hành: |
Journal on Information Technologies & Communications
2025
|
| Những chủ đề: | |
| Truy cập trực tuyến: | https://doi.org/10.32913/mic-ict-research.v2024.n2.1277 https://elib.vku.udn.vn/handle/123456789/5787 |
| Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
| Thư viện lưu trữ: | Trường Đại học Công nghệ Thông tin và Truyền thông Việt Hàn - Đại học Đà Nẵng |
|---|
Những quyển sách tương tự
-
Predicting higher order mutation score based on machine learning
Bỡi: Do, Van Nho, et al.
Được phát hành: (2024) -
Toward Improving the Quality of Mutation Operator and Test Case Effectiveness in Higher-Order Mutation Testing
Bỡi: Do, Van Nho, et al.
Được phát hành: (2023) -
Performance Analysis of Deep Learning Models for Software Fault Prediction Using the BugHunter Dataset
Bỡi: Dang, Thi Kim Ngan, et al.
Được phát hành: (2025) -
BKIDSet 2022 - Toward Generating a New DDoS Intrusion Detection Dataset
Bỡi: Luu, Minh Tri, et al.
Được phát hành: (2022) -
Increasing Mutation Testing Effectiveness by Combining Lower Order Mutants to Construct Higher Order Mutants
Bỡi: Nguyen, Quang Vu
Được phát hành: (2021)