WiFi Fingerprinting-based Indoor Positioning with Machine Learning Algorithms

With the rapid advances of mobile devices, location-based services have received significant attention. Among the available services, finding the exact position of a person, especially indoors, is a challenging problem. For indoor environments, using WiFi-based technology for positioning purposes is...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nguyễn, Thị Lương, Dương, Bảo Ninh, Phạm, Quang Huy, Nguyễn, Hữu Khánh
Formato: Conference paper
Lenguaje:English
Publicado: Khoa học và Kỹ thuật 2023
Acceso en línea:https://scholar.dlu.edu.vn/handle/123456789/2007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Descripción
Sumario:With the rapid advances of mobile devices, location-based services have received significant attention. Among the available services, finding the exact position of a person, especially indoors, is a challenging problem. For indoor environments, using WiFi-based technology for positioning purposes is reasonable due to its utilization of existing WiFi infrastructure. In this paper, we implement and compare the positioning results of three machine learning algorithms such as support vector machine, decision tree, and random forest. The algorithms are applied to a multi-condition WiFi fingerprinting dataset which was conducted in an office room where different environmental conditions are considered. The results show that the random forest achieves the best classification result with an accuracy of over 85%, while the two others get an approximate accuracy of 80%.