Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
This paper focuses on the study of a generalized semi-infinite programming, where the objective and the constraint functions are all real polynomials.We present amethod for finding ts global minimizers and global minimum using a hierarchy of semidefinite programming relaxations and prove the converg...
Uloženo v:
Hlavní autoři: | Liguo Jiao, Jae Hyoung, Phạm, Tiến Sơn |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2024
|
Témata: | |
On-line přístup: | https://scholar.dlu.edu.vn/handle/123456789/3630 https://doi.org/10.1007/s40306-024-00551-7 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Podobné jednotky
-
Semi-infinite optimization of controllable processes /
Autor: Rapoport, E. Y. -
Fermat’s rule at infinity in non-degenerate semi-algebraic optimization
Autor: Phạm, Tiến Sơn, a další
Vydáno: (2024) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
Autor: Vaithilingam, Jeyakumar, a další
Vydáno: (2023) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
Autor: Vaithilingam, Jeyakumar, a další
Vydáno: (2023) -
Positive polynomials and sums of squares /
Autor: Marshall, Murray.
Vydáno: (2008)