Combinations of Fast Activation and Trigonometric Functions in Kolmogorov–Arnold Networks

For years, many neural networks have been developed based on the Kolmogorov-Arnold Representation Theorem (KART), which was created to address Hilbert’s 13th problem. Recently, relying on KART, Kolmogorov-Arnold Networks (KANs) have attracted attention from the research community, stimulating the us...

全面介绍

Đã lưu trong:
书目详细资料
Những tác giả chính: Linh, Trần Thị Phương, Tạ, Hoàng Thắng, Thai Duy Quy
格式: Conference paper
语言:English
出版: 2025
主题:
在线阅读:https://scholar.dlu.edu.vn/handle/123456789/4901
标签: 添加标签
没有标签, 成为第一个标记此记录!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
实物特征
总结:For years, many neural networks have been developed based on the Kolmogorov-Arnold Representation Theorem (KART), which was created to address Hilbert’s 13th problem. Recently, relying on KART, Kolmogorov-Arnold Networks (KANs) have attracted attention from the research community, stimulating the use of polynomial functions such as B-splines and RBFs. However, these functions are not fully supported by GPU devices and are still considered less popular. In this paper, we propose the use of fast computational functions, such as ReLU and trigonometric functions (e.g., ReLU, sin, cos, arctan), as basis components in Kolmogorov–Arnold Networks (KANs). By integrating these function combinations into the network structure, we aim to enhance computational efficiency. Experimental results show that these combinations maintain competitive performance while offering potential improvements in training time and generalization.