A SMART FARM MANAGEMENT APPLICATION USING YOLOv11

As agriculture modernizes, integrating artificial intelligence (AI), image processing, and object recognition into farm management systems has become essential, especially in livestock farming, where traditional methods fall short. This paper introduces a smart farm application using the YOLOv11 mod...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Dang Thi Quynh Nhu, Dau Thi Tieu Diep, Phan Thanh Thao Quyen, Nguyễn, Hữu Khánh, Dương, Bảo Ninh, Nguyễn, Thị Lương
Médium: Conference paper
Jazyk:Vietnamese
Vydáno: 2025
Témata:
On-line přístup:https://scholar.dlu.edu.vn/handle/123456789/4938
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Popis
Shrnutí:As agriculture modernizes, integrating artificial intelligence (AI), image processing, and object recognition into farm management systems has become essential, especially in livestock farming, where traditional methods fall short. This paper introduces a smart farm application using the YOLOv11 model for real-time object detection to enhance livestock monitoring and control. The system, built with Python (backend), ReactJS (frontend), NodeJS, and Capacitor for mobile deployment, detects anomalies such as abnormal animal behavior or unauthorized access. It tracks individual animals' data and supports resource planning, disease monitoring, and intelligent reporting. Designed for small to medium-sized farms, the application improves productivity, security, and sustainability by aligning with the digital transformation of agriculture.