Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Nasrollahi, Nasrin
פורמט: ספר
שפה:English
יצא לאור: Springer 2015
נושאים:
גישה מקוונת:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/57789
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
תיאור
סיכום:This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.