Existence and Regularity Results for Some Shape Optimization Problems

​We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of more general Schrödinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autore principale: Velichkov, Bozhidar
Natura: Libro
Lingua:English
Pubblicazione: Springer 2015
Soggetti:
Accesso online:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/58190
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Descrizione
Riassunto:​We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of more general Schrödinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles. We investigate the properties of the optimal sets and of the optimal state functions. In particular, we prove that the eigenfunctions are Lipschitz continuous up to the boundary and that the optimal sets subject to the perimeter constraint have regular free boundary. We also consider spectral optimization problems in non-Euclidean settings and optimization problems for potentials and measures, as well as multiphase and optimal partition problems.