Existence and Regularity Results for Some Shape Optimization Problems

​We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of more general Schrödinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles...

Szczegółowa specyfikacja

Zapisane w:
Opis bibliograficzny
1. autor: Velichkov, Bozhidar
Format: Książka
Język:English
Wydane: Springer 2015
Hasła przedmiotowe:
Dostęp online:https://scholar.dlu.edu.vn/thuvienso/handle/DLU123456789/58190
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Opis
Streszczenie:​We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of more general Schrödinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles. We investigate the properties of the optimal sets and of the optimal state functions. In particular, we prove that the eigenfunctions are Lipschitz continuous up to the boundary and that the optimal sets subject to the perimeter constraint have regular free boundary. We also consider spectral optimization problems in non-Euclidean settings and optimization problems for potentials and measures, as well as multiphase and optimal partition problems.