Degenerate diffusions : Initial value problems and local regularity theory

The book deals with the existence, uniqueness, regularity, and asymptotic behavior of solutions to the initial value problem (Cauchy problem) and the initial-Dirichlet problem for a class of degenerate diffusions modeled on the porous medium type equation

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Daskalopoulos, Panagiota
Định dạng: Sách
Ngôn ngữ:Undetermined
Được phát hành: Germany European Mathematical Society 2007
Những chủ đề:
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Trung tâm Học liệu Trường Đại học Cần Thơ
LEADER 01590nam a2200217Ia 4500
001 CTU_134073
008 210402s9999 xx 000 0 und d
020 |c 2216000 
082 |a 515.353 
082 |b D229 
100 |a Daskalopoulos, Panagiota 
245 0 |a Degenerate diffusions : 
245 0 |b Initial value problems and local regularity theory 
245 0 |c Panagiota Daskalopoulos, Carlos E. Kenig 
260 |a Germany 
260 |b European Mathematical Society 
260 |c 2007 
520 |a The book deals with the existence, uniqueness, regularity, and asymptotic behavior of solutions to the initial value problem (Cauchy problem) and the initial-Dirichlet problem for a class of degenerate diffusions modeled on the porous medium type equation   |u _t = \Delta u^m  |,    |m  \geq 0  |,    |u  \geq 0  |.  Such models arise in plasma physics, diffusion through porous media, thin liquid film dynamics, as well as in geometric flows such as the Ricci flow on surfaces and the Yamabe flow. The approach presented to these problems uses local regularity estimates and Harnack type inequalities, which yield compactness for families of solutions. The theory is quite complete in the slow diffusion case (  |m >1  |)  and in the supercritical fast diffusion case (  |m _c < m < 1  |,    |m _c=(n-2)_+/n  |)  while many problems remain in the range   |m  \leq m_c  |.  All of these aspects of the theory are discussed in the book. 
650 |a Boundary value problems,Những vấn đề của giá trị giới hạn 
904 |i Trọng Hải 
980 |a Trung tâm Học liệu Trường Đại học Cần Thơ