Differential Harnack inequalities and the Ricci flow

In 2002, Grisha Perelman presented a new kind of differential Harnack inequality which involves both the (adjoint) linear heat equation and the Ricci flow. This led to a completely new approach to the Ricci flow that allowed interpretation as a gradient flow which maximizes different entropy functio...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Muller, Reto
Định dạng: Sách
Ngôn ngữ:Undetermined
Được phát hành: Germany European Mathematical Society 2006
Những chủ đề:
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Trung tâm Học liệu Trường Đại học Cần Thơ
LEADER 01705nam a2200205Ia 4500
001 CTU_134078
008 210402s9999 xx 000 0 und d
020 |c 1108000 
082 |a 516.362 
082 |b M958 
100 |a Muller, Reto 
245 0 |a Differential Harnack inequalities and the Ricci flow 
245 0 |c Reto Muller 
260 |a Germany 
260 |b European Mathematical Society 
260 |c 2006 
520 |a In 2002, Grisha Perelman presented a new kind of differential Harnack inequality which involves both the (adjoint) linear heat equation and the Ricci flow. This led to a completely new approach to the Ricci flow that allowed interpretation as a gradient flow which maximizes different entropy functionals. The goal of this book is to explain this analytic tool in full detail for the two examples of the linear heat equation and the Ricci flow. It begins with the original Li-Yau result, presents Hamilton's Harnack inequalities for the Ricci flow, and ends with Perelman's entropy formulas and space-time geodesics. The book is a self-contained, modern introduction to the Ricci flow and the analytic methods to study it. It is primarily addressed to students who have a basic introductory knowledge of analysis and of Riemannian geometry and who are attracted to further study in geometric analysis. No previous knowledge of differential Harnack inequalities or the Ricci flow is required. A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society. 
650 |a Global differential geometry,Hình học vi phân 
904 |i Trọng Hải 
980 |a Trung tâm Học liệu Trường Đại học Cần Thơ