A statistical approach to neural networks for pattern recognition
A Statistical Approach to Neural Networks for Pattern Recognition presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models. This book aims to answer questions that arise when statisticians are first confronted with this type of m...
Đã lưu trong:
Tác giả chính: | |
---|---|
Định dạng: | Sách |
Ngôn ngữ: | Undetermined |
Được phát hành: |
Hoboken, N.J.
Wiley
2007
|
Những chủ đề: | |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Trung tâm Học liệu Trường Đại học Cần Thơ |
---|
Tóm tắt: | A Statistical Approach to Neural Networks for Pattern Recognition presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models. This book aims to answer questions that arise when statisticians are first confronted with this type of model. Throughout the book, the MLP model is extended in several directions to show that a statistical modeling approach can make valuable contributions, and further exploration for fitting MLP models is made possible via the R and S-PLUS® codes that are available on the book's related Web site. A Statistical Approach to Neural Networks for Pattern Recognition successfully connects logistic regression and linear discriminant analysis, thus making it a critical reference and self-study guide for students and professionals alike in the fields of mathematics, statistics, computer science, and electrical engineering. |
---|