|
|
|
|
LEADER |
01901nam a2200409 4500 |
001 |
DLU110129141 |
005 |
##20111216 |
008 |
##101005s2011 maua b 001 0 eng |
010 |
# |
# |
|a 2010039827
|
020 |
# |
# |
|a 0123748569 (pbk.)
|
020 |
# |
# |
|a 9780123748560 (pbk.)
|
035 |
# |
# |
|a (OCoLC)ocn262433473
|
040 |
# |
# |
|a DLC
|c DLC
|d YDX
|d BTCTA
|d YDXCP
|d BWX
|d DEBSZ
|d CDX
|d IUL
|d DLC
|
042 |
# |
# |
|a pcc
|
082 |
# |
# |
|a 006.3
|b WI-I
|
100 |
# |
# |
|a Witten, I. H.
|q (Ian H.)
|
245 |
# |
# |
|a Data mining :
|b practical machine learning tools and techniques /
|c Ian H. Witten, Eibe Frank, Mark A. Hall.
|
250 |
# |
# |
|a 3rd ed.
|
260 |
# |
# |
|a Burlington, MA :
|b Morgan Kaufmann,
|c c2011.
|
300 |
# |
# |
|a xxxiii, 629 p. :
|b ill. ;
|c 24 cm.
|
504 |
# |
# |
|a Includes bibliographical references (p. 587-605) and index.
|
505 |
# |
# |
|a Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.
|
650 |
# |
# |
|a Data mining.
|
700 |
# |
# |
|a Frank, Eibe.
|
700 |
# |
# |
|a Hall, Mark A.
|
830 |
# |
# |
|a Morgan Kaufmann series in data management systems.
|
923 |
# |
# |
|a 19/2011
|
991 |
# |
# |
|a GT
|
992 |
# |
# |
|a 1667757
|
994 |
# |
# |
|a DLU
|
900 |
# |
# |
|a True
|
911 |
# |
# |
|a Đào Thị Thu Huyền
|
925 |
# |
# |
|a G
|
926 |
# |
# |
|a A
|
927 |
# |
# |
|a SH
|
980 |
# |
# |
|a Thư viện Trường Đại học Đà Lạt
|