Data mining : practical machine learning tools and techniques /

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Witten, I. H.
مؤلفون آخرون: Frank, Eibe., Hall, Mark A.
التنسيق: Sách giấy
منشور في: Burlington, MA : Morgan Kaufmann, c2011.
الطبعة:3rd ed.
سلاسل:Morgan Kaufmann series in data management systems.
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
جدول المحتويات:
  • Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned
  • Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond
  • Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer
  • 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.