Data mining : practical machine learning tools and techniques /

Guardat en:
Dades bibliogràfiques
Autor principal: Witten, I. H.
Altres autors: Frank, Eibe., Hall, Mark A.
Format: Sách giấy
Publicat: Burlington, MA : Morgan Kaufmann, c2011.
Edició:3rd ed.
Col·lecció:Morgan Kaufmann series in data management systems.
Matèries:
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Taula de continguts:
  • Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned
  • Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond
  • Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer
  • 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.