Data mining : practical machine learning tools and techniques /
Uloženo v:
Hlavní autor: | |
---|---|
Další autoři: | , |
Médium: | Sách giấy |
Vydáno: |
Burlington, MA :
Morgan Kaufmann,
c2011.
|
Vydání: | 3rd ed. |
Edice: | Morgan Kaufmann series in data management systems.
|
Témata: | |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Obsah:
- Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned
- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond
- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer
- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.