From Phase Transitions to Chaos: Topics in Modern Statistical Physics /

This volume comprises about 40 research papers and essays covering a wide range of subjects in the forefront of contemporary statistical physics. The contributors are scientists and specialists in several different fields. The book is dedicated to Peter Szepfalusy on the occasion of his 60th birthda...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: G. Gyorgyi
Tác giả khác: I. Kondor, L. Sasvari, T. Tel
Định dạng: Sách
Ngôn ngữ:Vietnamese
Được phát hành: Singapore : World Scientific , 1992
Những chủ đề:
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường CĐ Kỹ Thuật Cao Thắng
LEADER 02075nam a2200277 a 4500
001 TVCDKTCT13495
003 Thư viện trường Cao đẳng Kỹ thuật Cao Thắng
005 20111219000000
008 111219
980 \ \ |a Thư viện Trường CĐ Kỹ Thuật Cao Thắng 
024 |a RG_1 #1 eb0 i1 
020 # # |a 981020938X 
041 0 # |a vie 
082 # # |a 539 /   |b FR429P-g 
100 1 # |a G. Gyorgyi 
245 0 0 |a From Phase Transitions to Chaos: Topics in Modern Statistical Physics /  |c G. Gyorgyi, ...[et al.] 
260 # # |a Singapore :  |b World Scientific ,  |c 1992 
300 # # |a 585tr. 
520 # # |a This volume comprises about 40 research papers and essays covering a wide range of subjects in the forefront of contemporary statistical physics. The contributors are scientists and specialists in several different fields. The book is dedicated to Peter Szepfalusy on the occasion of his 60th birthday. Emphasis is placed on his two main areas of research, namely phase transitions and chaotic dynamical systems. They share common aspects like the applicability of the probabilistic approach or scaling behaviour and universality. Several papers deal with equilibrium phase transitions, critical dynamics, and pattern formation. Also represented are disordered systems, random field systems, growth processes, and neural networks. Statistical properties of interacting electron gases, such as the Kondo lattice, the Wigner crystal, and the Hubbard model, are treated. In the field of chaos, Hamiltonian transport and resonances, strange attractors, multifractal characteristics of chaos, and the effect of weak perturbations are discussed. A separate section is devoted to selected mathematical aspects of dynamical systems like the foundation of statistical mechanics, including the problem of ergodicity, and rigorous results on quantum chaos. 
520 # # |a Show More  
520 # # |a Show Less 
650 # 4 |a Statistical Physics --Modern 
650 # 4 |a foundation of statistical mechanics 
700 0 # |a I. Kondor 
700 0 # |a L. Sasvari 
700 0 # |a T. Tel