Medical image segmentation by convolutional neural network

The goal of this study will be to analyze outstanding deep learning network structures in the medical image processing field, thereby coming up with proposing a better network model that can improve performance productivity and quality of medical image segmentation challenges. In this study, the Une...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Trần Song Toàn
Tác giả khác: Prof. Don-Gey Liu (người hướng dẫn khoa học); Prof. Ching-Hwa Cheng (người hướng dẫn khoa học)
Ngôn ngữ:eng
Được phát hành: 逢 甲 大 學 2022
Truy cập trực tuyến:https://opac.tvu.edu.vn/pages/opac/wpid-detailbib-id-39393.html
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Trung tâm Học liệu – Phát triển Dạy và Học, Trường Đại học Trà Vinh
id https:--opac.tvu.edu.vn:9090-api-oai:39393
record_format dspace
spelling https:--opac.tvu.edu.vn:9090-api-oai:393932022-03-07T06:22:30Z Medical image segmentation by convolutional neural network Trần Song Toàn The goal of this study will be to analyze outstanding deep learning network structures in the medical image processing field, thereby coming up with proposing a better network model that can improve performance productivity and quality of medical image segmentation challenges. In this study, the Unet model is used as the backbone architecture. The analysis will focus on the disadvantages of Unet and Unet-based models, thereby proposing methods to overcome the weaknesses and improve the efficiency of the proposed model. 逢 甲 大 學 Prof. Don-Gey Liu (người hướng dẫn khoa học); Prof. Ching-Hwa Cheng (người hướng dẫn khoa học) 2022-03-07T06:22:30Z pdf https://opac.tvu.edu.vn/pages/opac/wpid-detailbib-id-39393.html eng
institution Trung tâm Học liệu – Phát triển Dạy và Học, Trường Đại học Trà Vinh
collection Thư viện số
language eng
description The goal of this study will be to analyze outstanding deep learning network structures in the medical image processing field, thereby coming up with proposing a better network model that can improve performance productivity and quality of medical image segmentation challenges. In this study, the Unet model is used as the backbone architecture. The analysis will focus on the disadvantages of Unet and Unet-based models, thereby proposing methods to overcome the weaknesses and improve the efficiency of the proposed model.
author2 Prof. Don-Gey Liu (người hướng dẫn khoa học); Prof. Ching-Hwa Cheng (người hướng dẫn khoa học)
author_facet Prof. Don-Gey Liu (người hướng dẫn khoa học); Prof. Ching-Hwa Cheng (người hướng dẫn khoa học)
Trần Song Toàn
author Trần Song Toàn
spellingShingle Trần Song Toàn
Medical image segmentation by convolutional neural network
author_sort Trần Song Toàn
title Medical image segmentation by convolutional neural network
title_short Medical image segmentation by convolutional neural network
title_full Medical image segmentation by convolutional neural network
title_fullStr Medical image segmentation by convolutional neural network
title_full_unstemmed Medical image segmentation by convolutional neural network
title_sort medical image segmentation by convolutional neural network
publisher 逢 甲 大 學
publishDate 2022
url https://opac.tvu.edu.vn/pages/opac/wpid-detailbib-id-39393.html
_version_ 1812601600266469376