Một số giải pháp tối ưu tập luật mờ TSK trích xuất từ máy học véc-tơ hỗ trợ hồi quy

Trích xuất tập luật mờ TSK từ máy học véc-tơ hỗ trợ là một trong những hướng tiếp cận để xây đựng mô hình mờ cho các bài toán dự đoán, dự báo. Những nghiên cứu trước đây theo hướng tiếp cận này cho thấy mô hình mờ được huấn luyện tự động dựa trên tập dữ liệu đầu vào, dẫn đến những hạn chế chủ yếu nh...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Nguyễn, Đức Hiển
Định dạng: Bài viết
Ngôn ngữ:Vietnamese
Được phát hành: 2018
Những chủ đề:
Truy cập trực tuyến:http://thuvien.cit.udn.vn//handle/123456789/169
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Trường Đại học Công nghệ Thông tin và Truyền thông Việt Hàn - Đại học Đà Nẵng
Miêu tả
Tóm tắt:Trích xuất tập luật mờ TSK từ máy học véc-tơ hỗ trợ là một trong những hướng tiếp cận để xây đựng mô hình mờ cho các bài toán dự đoán, dự báo. Những nghiên cứu trước đây theo hướng tiếp cận này cho thấy mô hình mờ được huấn luyện tự động dựa trên tập dữ liệu đầu vào, dẫn đến những hạn chế chủ yếu như kích thước tập luật lớn, thiếu đặc trưng, thiếu tính bao phủ. Trong bài báo này, nhóm tác giả nghiên cứu đế xuất và thực nghiệm một số giải pháp nhằm rút gọn, tối ưu tập luật mờ TSK trích xuất được nhưng vẫn đảm bảo hiệu quả dự đoán, dự báo của mô mình.