An Extended Max-margin Non-negative Matrix Factorization for Face Recognition
Non-negative matrix factorization (NMF) is a dimension-reduction technique based on a low-rank approximation of the feature space. Unfortunately, most existing NMF based methods are not ready for encoding higher-order data information and ignore the local geometric structure contained in the data s...
Сохранить в:
| Главный автор: | Mai, Lam |
|---|---|
| Формат: | Статья |
| Язык: | English |
| Опубликовано: |
2018
|
| Предметы: | |
| Online-ссылка: | http://thuvien.cit.udn.vn//handle/123456789/205 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
| Thư viện lưu trữ: | Trường Đại học Công nghệ Thông tin và Truyền thông Việt Hàn - Đại học Đà Nẵng |
|---|
Схожие документы
-
Joint Spatial Geometric and Max-margin Classifier Constraints for Facial Expression Recognition Using Nonnegative Matrix Factorization
по: Mai, Lam, et al.
Опубликовано: (2021) -
Building System Face Recognition Supports Attendance
по: Nguyen, Viet Nam, et al.
Опубликовано: (2023) -
Research and building system face recognition supports attendance
по: Tran, Van Hop, et al.
Опубликовано: (2024) -
Face recognition attendance system
по: Tran, Van Quy
Опубликовано: (2022) -
Face recognition : from theory to applications /
Опубликовано: (1998)