SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES
Nanoscale copper hexacyanoferrate (CuHF) is a low-cost material prepared via a chemical co-precipitation method. XRD diagram, FTIR spectrum, EDS image, HR-TEM image, surface area (BET), and pore volume parameters were used to determine the properties and morphologies of the CuHF. The synthesized nan...
Đã lưu trong:
Những tác giả chính: | , , , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
2022
|
Những chủ đề: | |
Truy cập trực tuyến: | http://scholar.dlu.edu.vn/handle/123456789/1182 https://doi.org/10.54607/hcmue.js.19.7.3444(2022) |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-1182 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
copper hexacyanoferrate, cubic structure; nanoparticle |
spellingShingle |
copper hexacyanoferrate, cubic structure; nanoparticle Nguyễn, Đình Trung Trương, Đông Phương Lê, Vũ Trâm Anh Huỳnh, Thị Ánh Ly Võ, Sỹ Lợi Phan, Ngọc Bảo SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES |
description |
Nanoscale copper hexacyanoferrate (CuHF) is a low-cost material prepared via a chemical co-precipitation method. XRD diagram, FTIR spectrum, EDS image, HR-TEM image, surface area (BET), and pore volume parameters were used to determine the properties and morphologies of the CuHF. The synthesized nanomaterials have the following properties: nanoscale and cubic structure (space group F-43m). The CuHF molecular formula was Cu13[Fe(CN)6]14·(2K)·10H2O. CuHF was a complex substance with a surface area of 12.80 m2/g and average pore width of about 34.50 nm. |
format |
Journal article |
author |
Nguyễn, Đình Trung Trương, Đông Phương Lê, Vũ Trâm Anh Huỳnh, Thị Ánh Ly Võ, Sỹ Lợi Phan, Ngọc Bảo |
author_facet |
Nguyễn, Đình Trung Trương, Đông Phương Lê, Vũ Trâm Anh Huỳnh, Thị Ánh Ly Võ, Sỹ Lợi Phan, Ngọc Bảo |
author_sort |
Nguyễn, Đình Trung |
title |
SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES |
title_short |
SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES |
title_full |
SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES |
title_fullStr |
SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES |
title_full_unstemmed |
SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES |
title_sort |
synthesis and characterization of copper hexacyanoferrate (ii) nanoparticles |
publishDate |
2022 |
url |
http://scholar.dlu.edu.vn/handle/123456789/1182 https://doi.org/10.54607/hcmue.js.19.7.3444(2022) |
_version_ |
1768305958873726976 |
spelling |
oai:scholar.dlu.edu.vn:123456789-11822022-10-06T09:16:27Z SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES Nguyễn, Đình Trung Trương, Đông Phương Lê, Vũ Trâm Anh Huỳnh, Thị Ánh Ly Võ, Sỹ Lợi Phan, Ngọc Bảo copper hexacyanoferrate, cubic structure; nanoparticle Nanoscale copper hexacyanoferrate (CuHF) is a low-cost material prepared via a chemical co-precipitation method. XRD diagram, FTIR spectrum, EDS image, HR-TEM image, surface area (BET), and pore volume parameters were used to determine the properties and morphologies of the CuHF. The synthesized nanomaterials have the following properties: nanoscale and cubic structure (space group F-43m). The CuHF molecular formula was Cu13[Fe(CN)6]14·(2K)·10H2O. CuHF was a complex substance with a surface area of 12.80 m2/g and average pore width of about 34.50 nm. 19 6 915-925 2022-10-06T08:38:59Z 2022-10-06T08:38:59Z 2022-06-30 Journal article Bài báo đăng trên tạp chí trong nước (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/1182 https://doi.org/10.54607/hcmue.js.19.7.3444(2022) en HCMUE Journal of Science 2734-9918 Avila, M., Reguera, L., Rodríguez-Hernández, J., Balmaseda, J., & Reguera, E. (2008). Porous framework of T2[Fe(CN)6]•xH2O with T=Co, Ni, Cu, Zn, and H2 storage. Journal of Solid State Chemistry, 181(11), 2899-2907. Bragg, W. H., & Bragg, W. L. (1913) The Reflexion of X-rays by Crystals. Proc R Soc Lond A., 88(605), 428-38. Ho, K. D., Zhou, D., Wang, R, Yu, X., Jiao, Q., Yang, Z., Song, Z., & Qiu, J. (2014) Energy transfer and upconversion emission of Er3+/Tb3+/Yb3+ co-doped transparent glass-ceramics containing Ba2LaF7 nanocrystals under heat treatment. Opt Mater, 36, 639-644. Firouzi, A., Qiao, R.; Motallebi, S., Valencia, C.W., Israel, H.S., Fujimoto, M., Wray, L.A.; Chuang, Y.-D., Yang, W., & Wessells, C.D. (2018) Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nat. Commun., 9, 861. Ji, Z., Han, B., Liang, H., Zhou, C., Gao, Q., Xia, K., & Wu, J. (2016) On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Appl. Mater. Interfaces, 8, 33619-33625. Karyakin, A. (2017). Advances of Prussian blue and its analogues in (bio)sensors. Curr. Opin. Electrochem., 5, 92-98. Karyakin, A. A. (2001) Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis, 13, 813-819. Kiener, J., Limousy, L., Jeguirim, M., Le Meins, J. M., Hajjar-Garreau, S., Bigoin, G., & Ghimbeu, C. M. (2019). Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption. Materials, 12(8), 1253. Lee, S. W., Yang, Y., Lee, H. W., Ghasemi, H., Kraemer, D., Chen, G., & Cui, Y. (2014) An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun, 5, 3942. Qian, J., Wu, C., Cao, Y., Ma, Z.-F., Huang, Y., Ai, X., & Yang, H. (2018). Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries. Adv. Energy Mater, 8, 1702619. Sun, Sh. D., Zhang, X. Ch., Cui, J., & Liang Sh. H. (2020). Identification of the Miller indices of crystallographic plane: A tutorial and comprehensive on fundamental theory, universal methods based on different case studies and matters needing attention. RCS. Nanoscale, 12, 16657-16677. Nguyen, D. T., Ning Ping., Le, T. H. L., & Ho, K. D. (2021). Synthesis, characterization, and caesium adsorbent application of trigonal zinc hexacyanoferrate (II) nanoparticles. J Enviro Chem Engine, 9, 106772. Vipin, A. K., Ling, S., & Fugetsu, B. (2014). Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydrate Polymers, 111, 477-484. Wu, X., Wu, C., Wei, C., Hu, L., Qian, J., Cao, Y., Ai, X., Wang, J., & Yang, H. (2016). Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces, 8, 5393-5399. Yun, J., Zeng, Y., Kim, M., Gao, C., Kim, Y., Lu, L., Kim, T.T.-H., Zhao, W.; Bae, T.H., & Lee, S.W. (2021) Tear-Based Aqueous Batteries for Smart Contact Lenses Enabled by Prussian Blue Analogue Nanocomposites. Nano Lett., 21, 1659-1665. |