COPPER HEXACYANOFERRATE (II): SYNTHESIS, CHARACTERIZATION, AND CESIUM, STRONTIUM ADSORBENT APPLICATION

Low-cost nanoscale copper hexacyanoferrate (CuHF), a good selective adsorbent for cesium (Cs+) removal, was prepared using the chemical co-precipitation method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and high-resolution tr...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Nguyễn, Đình Trung, Trương, Đông Phương, Lê, Vũ Trâm Anh, Kiều, Thị Đan Thy, Nguyễn, Trần Thúy Hồng, Ning, Ping, Đường, Thị Hương Giang, Hồ, Kim Dân
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: 2022
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/handle/123456789/1184
https://doi.org/10.37569/DalatUniversity.11.4.901(2021)
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-1184
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Adsorption, Cesium, Copper hexacyanoferrate, Strontium.
spellingShingle Adsorption, Cesium, Copper hexacyanoferrate, Strontium.
Nguyễn, Đình Trung
Trương, Đông Phương
Lê, Vũ Trâm Anh
Kiều, Thị Đan Thy
Nguyễn, Trần Thúy Hồng
Ning, Ping
Đường, Thị Hương Giang
Hồ, Kim Dân
COPPER HEXACYANOFERRATE (II): SYNTHESIS, CHARACTERIZATION, AND CESIUM, STRONTIUM ADSORBENT APPLICATION
description Low-cost nanoscale copper hexacyanoferrate (CuHF), a good selective adsorbent for cesium (Cs+) removal, was prepared using the chemical co-precipitation method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and high-resolution transmission electron microscopy (HR-TEM) were conducted to determine the CuHF morphology. Copper hexacyanoferrate, Cu13[Fe(CN)6]14.(2K).10H2O, has a cubic structure (space group F-43m) in the range of 10-30 nm and a Brunauer-Emmett-Teller (BET) surface area of 462.42 m2/g. The removal of Cs+ and Sr2+ is dependent on pH; the maximum adsorption capacity (qmax) of CuHF is achieved at a pH = 6. From the Langmuir model, qmax = 143.95 mg/g for Cs+ and 79.26 mg/g for Sr2+, respectively. At high concentrations, Na+, Ca2+, and K+ ions have very little effect on Cs+ removal, and Na+ and K+ ions have a higher affinity for removing Sr2+ than Ca2+ at all concentrations. CuHF has a high affinity for alkaline cations in the order: Cs+ > K+ > Na+ > Ca2+ > Sr2+, as proposed and discussed.
format Journal article
author Nguyễn, Đình Trung
Trương, Đông Phương
Lê, Vũ Trâm Anh
Kiều, Thị Đan Thy
Nguyễn, Trần Thúy Hồng
Ning, Ping
Đường, Thị Hương Giang
Hồ, Kim Dân
author_facet Nguyễn, Đình Trung
Trương, Đông Phương
Lê, Vũ Trâm Anh
Kiều, Thị Đan Thy
Nguyễn, Trần Thúy Hồng
Ning, Ping
Đường, Thị Hương Giang
Hồ, Kim Dân
author_sort Nguyễn, Đình Trung
title COPPER HEXACYANOFERRATE (II): SYNTHESIS, CHARACTERIZATION, AND CESIUM, STRONTIUM ADSORBENT APPLICATION
title_short COPPER HEXACYANOFERRATE (II): SYNTHESIS, CHARACTERIZATION, AND CESIUM, STRONTIUM ADSORBENT APPLICATION
title_full COPPER HEXACYANOFERRATE (II): SYNTHESIS, CHARACTERIZATION, AND CESIUM, STRONTIUM ADSORBENT APPLICATION
title_fullStr COPPER HEXACYANOFERRATE (II): SYNTHESIS, CHARACTERIZATION, AND CESIUM, STRONTIUM ADSORBENT APPLICATION
title_full_unstemmed COPPER HEXACYANOFERRATE (II): SYNTHESIS, CHARACTERIZATION, AND CESIUM, STRONTIUM ADSORBENT APPLICATION
title_sort copper hexacyanoferrate (ii): synthesis, characterization, and cesium, strontium adsorbent application
publishDate 2022
url http://scholar.dlu.edu.vn/handle/123456789/1184
https://doi.org/10.37569/DalatUniversity.11.4.901(2021)
_version_ 1768305959578370048
spelling oai:scholar.dlu.edu.vn:123456789-11842022-10-06T09:04:11Z COPPER HEXACYANOFERRATE (II): SYNTHESIS, CHARACTERIZATION, AND CESIUM, STRONTIUM ADSORBENT APPLICATION Nguyễn, Đình Trung Trương, Đông Phương Lê, Vũ Trâm Anh Kiều, Thị Đan Thy Nguyễn, Trần Thúy Hồng Ning, Ping Đường, Thị Hương Giang Hồ, Kim Dân Adsorption, Cesium, Copper hexacyanoferrate, Strontium. Low-cost nanoscale copper hexacyanoferrate (CuHF), a good selective adsorbent for cesium (Cs+) removal, was prepared using the chemical co-precipitation method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and high-resolution transmission electron microscopy (HR-TEM) were conducted to determine the CuHF morphology. Copper hexacyanoferrate, Cu13[Fe(CN)6]14.(2K).10H2O, has a cubic structure (space group F-43m) in the range of 10-30 nm and a Brunauer-Emmett-Teller (BET) surface area of 462.42 m2/g. The removal of Cs+ and Sr2+ is dependent on pH; the maximum adsorption capacity (qmax) of CuHF is achieved at a pH = 6. From the Langmuir model, qmax = 143.95 mg/g for Cs+ and 79.26 mg/g for Sr2+, respectively. At high concentrations, Na+, Ca2+, and K+ ions have very little effect on Cs+ removal, and Na+ and K+ ions have a higher affinity for removing Sr2+ than Ca2+ at all concentrations. CuHF has a high affinity for alkaline cations in the order: Cs+ > K+ > Na+ > Ca2+ > Sr2+, as proposed and discussed. 11 4 76-97 2022-10-06T09:04:06Z 2022-10-06T09:04:06Z 2021-10-29 Journal article Bài báo đăng trên tạp chí trong nước (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/1184 https://doi.org/10.37569/DalatUniversity.11.4.901(2021) en Dalat University Journal of Science 0866-787X Aguila, B., Banerjee, D., Nie, Z., Shin, Y., Ma, S., & Thallapally, P. K. (2016). Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chemical Communications, 52(35), 5940-5942. Ali, M. M. S., Sami, N. M., & El-Sayed, A. A. (2020). Removal of Cs+, Sr2+ and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: Kinetics and equilibrium studies. Journal of Radioanalytical and Nuclear Chemistry, 324(11), 189-201. Ali, S. R., Bansal, V. K., Khan, A. A., Jain, S. K., & Ansari, M. A. (2009). Growth of zinc hexacyanoferrate nanocubes and their potential as heterogeneous catalyst for solvent-free oxidation of benzyl alcohol. Journal of Molecular Catalysis A: Chemical, 303(1-2), 60-64. Avila, M., Reguera, L., Rodríguez-Hernández, J., Balmaseda, J., & Reguera, E. (2008). Porous framework of T2[Fe(CN)6]•xH2O with T=Co, Ni, Cu, Zn, and H2 storage. Journal of Solid State Chemistry, 181(11), 2899-2907. Avramenko, V., Bratskaya, S., Zheleznov, V., Sheveleva, I., Voitenko, O., & Sergienko, V. (2011). Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides. Journal of Hazardous Materials, 186(2-3), 1343-1350. Awual, M. R., Yaita, T., Taguchi, T., Shiwaku, H., Suzuki, S., & Okamoto, Y. (2014). Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. Journal of Hazardous Materials, 278, 227-235. Ayrault, S., Jimenez, B., Garnier, E., Fedoroff, M., Jones, D. J., & Loos-Neskovic, C. (1998). Sorption mechanisms of cesium on CuII2FeII(CN)6 and CuII3[FeIII(CN)6]2 hexacyanoferrates and their relation to the crystalline structure. Journal of Solid State Chemistry, 141(2), 475-485. Clarke, T. D., & Wai, C. M. (1998). Selective removal of cesium from acid solutions with immobilized copper ferrocyanide. Analytical Chemistry, 70(17), 3708-3711. El-Kamash, A. M. (2008). Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. Journal of Hazardous Materials, 151(2-3), 432-445. Faghihian, H., Iravani, M., Moayed, M., & Ghannadi-Maragheh, M. (2013). Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Chemical Engineering Journal, 222, 41-48. Gad, H. M. H., Elsanafeny, H. A., Ali, M. M. S., Lasheen, Y. F., Abdelwahed, M. G. (2016). Factors affecting the sorption behavior of Cs+ and Sr2+ using biosorbent material. Russian Journal of Applied Chemistry, 89, 988-999. Haas, P. A. (1993). A review of information on ferrocyanide solids for removal of cesium from solutions. Separation Science and Technology, 28(17-18), 2479-2506. Hwang, K. S., Park, C. W., Lee, K.-W., Park, S.-J., & Yang, H.-M. (2017). Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516, 375-382. Ishizaki, M., Akiba, S., Ohtani, A., Hoshi, Y., Ono, K., Matsuba, M., Togashi, T., Kananizuka, K., Sakamoto, M., Takahashi, A., Kawamoto, T., Tanaka, H., Watanabe, M., Arisaka, M., Nankawa, T., & Kurihara, M. (2013). Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Transactions, 42(45), 16049-16055. Işık, B., Kurtoğlu, A. E., Gürdağ, G., & Keçeli, G. (2020). Radioactive cesium ion removal from wastewater using polymer metal oxide composites. Journal of Hazardous Materials, 403, 123652. Ke, Y., Li, Y., Zhu, L., Zhou, Y., & Liu, D. (2020). Rapid enrichment of cesium ions in aqueous solution by copper ferrocyanide powder. SN Applied Sciences, 2(4), 522. Khandaker, S., Toyohara, Y., Kamida, S., & Kuba, T. (2018). Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resources and Industry, 19, 35-46. Kido, G., Takasaki, M., Minami, K., Tanaka, H., Ogawa, H., Kawamoto, T., & Yoshino, K. (2017). Analysis of Cs-adsorption behavior using a column filled with microcapsule beads of potassium copper hexacyanoferrate. Journal of Nuclear Science and Technology, 54(11), 1157-1162. Kiener, J., Limousy, L., Jeguirim, M., Le Meins, J.-M., Hajjar-Garreau, S., Bigoin, G., & Ghimbeu, C. M. (2019). Activated carbon/transition metal (Ni, In, Cu) hexacyanoferrate nanocomposites for cesium adsorption. Materials, 12(8), 1253. Koo, Y.-H., Yang, Y.-S., & Song, K.-W. (2014). Radioactivity release from the Fukushima accident and its consequences: A review. Progress in Nuclear Energy, 74, 61-70. Loos-Neskovic, C., Ayrault, S., Badillo, V., Jimenez, B., Garnier, E., Fedoroff, M., Jones, D. J., & Merinov, B. (2004). Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. Journal of Solid State Chemistry, 177(6), 1817-1828. Ma, B., Oh, S., Shin, W. S., & Choi, S.-J. (2011). Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination, 276(1-3), 336-346. Mimura, H., Lehto, J., & Harjula, R. (1997). Selective removal of cesium from simulated high-level liquid wastes by insoluble ferrocyanides. Journal of Nuclear Science and Technology, 34(6), 607-609. Murray-Rust, P. (2021). Open-access collection of crystal structures of organic, inorganic, metal-organics compounds and minerals, excluding biopolymers. http://www.crystallography.net/cod/ Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley. Nilchi, A., Saberi, R., Moradi, M., Azizpour, H., & Zarghami, R. (2011). Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution. Chemical Engineering Journal, 172(1), 572-580. Parajuli, D., Takahashi, A., Noguchi, H., Kitajima, A., Tanaka, H., Takasaki, M., Yoshino, K., & Kawamoto, T. (2016). Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination. Chemical Engineering Journal, 283, 1322-1328. Rahman, R. O. A., Ibrahium, H. A., & Hung, Y.-T. (2011). Liquid radioactive wastes treatment: A review. Water, 3(2), 551-565. Shanker, U., Jassal, V., & Rani, M. (2017). Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. Journal of Environmental Management, 204, 337-348. Singh, S., Eapen, S., Thorat, V., Kaushik, C. P., Raj, K., & D’Souza, S. F. (2008). Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. Ecotoxicology and Environmental Safety, 69(2), 306-311. Sun, S. D., Zhang, X. C., Cui, J., & Liang S. H. (2020). Identification of the Miller indices of a crystallographic plane: A tutorial and comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. RCS Nanoscale, 12(32), 16,657-16,677. Takahashi, A., Kitajima, A., Parajuli, D., Hakuta, Y., Tanaka, H., Ohkoshi, S., & Kawamoto, T. (2016). Radioactive cesium removal from ash-washing solution with high pH and high K+-concentration using potassium zinc hexacyanoferrate. Chemical Engineering Research and Design, 109, 513-518. Todd, T. A., Batcheller, T. A., Law, J. D., & Herbst, R. S. (2004). Cesium and strontium separation technologies literature review. United States. https://doi.org/10.2172/910643 Vincent, T., Vincent, C., & Guibal, E. (2015). Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents–A mini-review. Molecules, 20(11), 20,582-20,613. Vipin, A. K., Ling, S., & Fugetsu, B. (2014). Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydrate Polymers, 111, 477-484. Vipin, A. K., Ling, S., & Fugetsu, B. (2016). Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous and Mesoporous Materials, 224, 84-88. Wang, L., Feng, M., Liu, C., Zhao, Y., Li, S., Wang, H., Yan, L., Tian, G., & Li, S. (2009). Supporting of potassium copper hexacyanoferrate on porous activated carbon substrate for cesium separation. Separation Science and Technology, 44(16), 4023-4035. Williams, A. N., Pack, M., & Phongikaroon, S. (2015). Separation of strontium and cesium from ternary and quaternary lithium chloride-potassium chloride salts via melt crystallization. Nuclear Engineering and Technology, 47(7), 867-874. Xu, C., Wang, J., & Chen, J. (2012). Solvent extraction of strontium and cesium: A review of recent progress. Solvent Extraction and Ion Exchange, 30(6), 623-650. Yang, H., Sun, L., Zhai, J., Li, H., Zhao, Y., & Yu, H. (2014). In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. Journal of Materials Chemistry A, 2(2), 326-332. Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., & Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences, 108(49), 19,530-19,534. Zong, Y., Zhang, Y., Lin, X., Ye, D., Qiao, D., & Zeng, S. (2017). Correction: Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes. RSC Advances, 7(54), 33,974-33,974.