INVESTIGATE THE ADSORPTION OF CESIUM ION (Cs+) AND STRONTIUM ION (Sr2+) ON Zn2[Fe(CN)6] NANOPARTICLES

Low-cost, nanoscale zinc hexacyanoferrate (ZnHF), an effective adsorbent for cesium (Cs+) and strontium (Sr2+) removal, was prepared using the chemical co-precipitation method. The Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) spe...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Trương, Đông Phương, Nguyễn, Đình Trung, Lê, Vũ Trâm Anh, Kiều, Thị Đan Thy, Nguyễn, Trần Thúy Hồng
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: 2022
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/handle/123456789/1185
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-1185
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic adsorption; cesium, nanoparticle; strontium; zinc hexacyanoferrate
spellingShingle adsorption; cesium, nanoparticle; strontium; zinc hexacyanoferrate
Trương, Đông Phương
Nguyễn, Đình Trung
Lê, Vũ Trâm Anh
Kiều, Thị Đan Thy
Nguyễn, Trần Thúy Hồng
INVESTIGATE THE ADSORPTION OF CESIUM ION (Cs+) AND STRONTIUM ION (Sr2+) ON Zn2[Fe(CN)6] NANOPARTICLES
description Low-cost, nanoscale zinc hexacyanoferrate (ZnHF), an effective adsorbent for cesium (Cs+) and strontium (Sr2+) removal, was prepared using the chemical co-precipitation method. The Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) spectra, and high-resolution transmission electron microscopy (HRTEM) images were performed to determine the morphologies of ZnHF. The Zn15[Fe(CN)6]12(2K).10H2O was the trigonal structure (space group p-3c1) in the range of 50-200 nm, the BET surface area 43.08 m2/g. The Cs+ and Sr2+ removal were dependent on pH; this material's maximum value of adsorption capacity (qmax) is achieved at a pH of 6. According to the Langmuir model qmax = 190.52 mg/g and 72.43 mg/g for Cs+ and Sr2+ respectively. The Langmuir model was conformable to describe the adsorption process of both Cs+ and Sr2+ ions by ZnHF. The low-cost easily synthesized nanoscale zinc hexacyanoferrate (ZnHF) material. This material becomes an attractive and promising adsorbent in treating Cs+ and Sr2+ ions of nuclear water.
format Journal article
author Trương, Đông Phương
Nguyễn, Đình Trung
Lê, Vũ Trâm Anh
Kiều, Thị Đan Thy
Nguyễn, Trần Thúy Hồng
author_facet Trương, Đông Phương
Nguyễn, Đình Trung
Lê, Vũ Trâm Anh
Kiều, Thị Đan Thy
Nguyễn, Trần Thúy Hồng
author_sort Trương, Đông Phương
title INVESTIGATE THE ADSORPTION OF CESIUM ION (Cs+) AND STRONTIUM ION (Sr2+) ON Zn2[Fe(CN)6] NANOPARTICLES
title_short INVESTIGATE THE ADSORPTION OF CESIUM ION (Cs+) AND STRONTIUM ION (Sr2+) ON Zn2[Fe(CN)6] NANOPARTICLES
title_full INVESTIGATE THE ADSORPTION OF CESIUM ION (Cs+) AND STRONTIUM ION (Sr2+) ON Zn2[Fe(CN)6] NANOPARTICLES
title_fullStr INVESTIGATE THE ADSORPTION OF CESIUM ION (Cs+) AND STRONTIUM ION (Sr2+) ON Zn2[Fe(CN)6] NANOPARTICLES
title_full_unstemmed INVESTIGATE THE ADSORPTION OF CESIUM ION (Cs+) AND STRONTIUM ION (Sr2+) ON Zn2[Fe(CN)6] NANOPARTICLES
title_sort investigate the adsorption of cesium ion (cs+) and strontium ion (sr2+) on zn2[fe(cn)6] nanoparticles
publishDate 2022
url http://scholar.dlu.edu.vn/handle/123456789/1185
_version_ 1768305959939080192
spelling oai:scholar.dlu.edu.vn:123456789-11852022-10-06T09:11:46Z INVESTIGATE THE ADSORPTION OF CESIUM ION (Cs+) AND STRONTIUM ION (Sr2+) ON Zn2[Fe(CN)6] NANOPARTICLES Trương, Đông Phương Nguyễn, Đình Trung Lê, Vũ Trâm Anh Kiều, Thị Đan Thy Nguyễn, Trần Thúy Hồng adsorption; cesium, nanoparticle; strontium; zinc hexacyanoferrate Low-cost, nanoscale zinc hexacyanoferrate (ZnHF), an effective adsorbent for cesium (Cs+) and strontium (Sr2+) removal, was prepared using the chemical co-precipitation method. The Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) spectra, and high-resolution transmission electron microscopy (HRTEM) images were performed to determine the morphologies of ZnHF. The Zn15[Fe(CN)6]12(2K).10H2O was the trigonal structure (space group p-3c1) in the range of 50-200 nm, the BET surface area 43.08 m2/g. The Cs+ and Sr2+ removal were dependent on pH; this material's maximum value of adsorption capacity (qmax) is achieved at a pH of 6. According to the Langmuir model qmax = 190.52 mg/g and 72.43 mg/g for Cs+ and Sr2+ respectively. The Langmuir model was conformable to describe the adsorption process of both Cs+ and Sr2+ ions by ZnHF. The low-cost easily synthesized nanoscale zinc hexacyanoferrate (ZnHF) material. This material becomes an attractive and promising adsorbent in treating Cs+ and Sr2+ ions of nuclear water. 18 9 1359-1367 2022-10-06T09:11:40Z 2022-10-06T09:11:40Z 2021-09-25 Journal article Bài báo đăng trên tạp chí trong nước (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/1185 en HCMUE Journal of Science 2734-9918 Abdollahi, T., Towfighi, J., & Rezaei-Vahidian, H. (2019). Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste. Environmental Technology & Innovation, 17, 100592. doi:10.1016/j.eti.2019.100592 Aguila, B., Banerjee, D., Nie, Z., Shin, Y., Ma, S., & Thallapally, P. K. (2016). Selective removal of cesium and strontium using porous frameworks from high-level nuclear waste. Chemical Communications, 52(35), 5940-5942. doi:10.1039/c6cc00843g Ali, M. M. S., Sami, N. M., & El-Sayed, A. A. (2020). Removal of Cs+, Sr2+, and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies. Journal of Radioanalytical and Nuclear Chemistry, 324, 189-201. doi:10.1007/s10967-020-07067-y. Avery, S. V. (1996). Fate of caesium in the environment: Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems. Journal of Environmental Radioactivity, 30(2), 139-171. doi:10.1016/0265-931x(96)89276-9 Avila, M., Reguera, L., Rodríguez-Hernández, J., Balmaseda, J., & Reguera, E. (2008). Porous framework of T2[Fe(CN)6].xH2O with T=Co, Ni, Cu, Zn, and H2 storage. Journal of Solid State Chemistry, 181(11), 2899-2907. doi:10.1016/j.jssc.2008.07.030 Cabrera, W. E., Schrooten, I., De Broe, M. E., & D’Haese, P. C. (1999). Strontium and Bone. Journal of Bone and Mineral Research, 14 (5), 661-668. doi:10.1359/jbmr.1999.14.5.661 El-Kamash, A. M. (2008). Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. Journal of Hazardous Materials, 151(2-3), 432-445. doi:10.1016/j.jhazmat.2007.06.009 Faghihian, H., Iravani, M., Moayed, M., & Ghannadi-Maragheh, M. (2013). Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Chemical Engineering Journal, 222, 41-48. doi:10.1016/j.cej.2013.02.035 Goyal, N., Gao, P., Wang, Z., Cheng, S., Ok, Y. S., Li, G., & Liu, L. (2020). Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium. Journal of Hazardous Materials, 392, 122494. doi:10.1016/j.jhazmat.2020.122494 Haas, P. A. (1993). A Review of Information on Ferrocyanide Solids for Removal of Cesium from Solutions. Separation Science and Technology, 28(17-18), 2479-2506. doi:10.1080/01496399308017493 Jassal, V., & Shanker1, U. (2015). Synthesis, Characterization and Applications of Nano-structured Metal Hexacyanoferrates: A Review. Journal of Environmental Analytical Chemistry, 2(2), 1-14. doi:10.4172/2380-2391.1000128 Li, B., Liao, J., Wu, J., Zhang, D., Zhao, J., Yang, Y., … & Liu, N. (2008). Removal of radioactive cesium from solutions by zinc ferrocyanide. Nuclear Science and Techniques, 19(2), 88-92. doi:10.1016/s1001-8042(08)60029-9 Mark, L., Rex, P. (2003). Structure Determination by X-ray Crystallography (631). Springer US. Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds (484). Wiley. Narang, J., Chauhan, N., & Pundir, C. S. (2013). Construction of triglyceride biosensor based on nickel oxide–chitosan/zinc oxide/zinc hexacyanoferrate film. International Journal of Biological Macromolecules, 60, 45-51. doi:10.1016/j.ijbiomac.2013.05.007 Petryna, A. (1995). Sarcophagus: Chernobyl in Historical Light. Cultural Anthropology, 10(2), 196-220. doi:10.1525/can.1995.10.2.02a00030 Rodríguez-Hernández, J., Reguera, E., Lima, E., Balmaseda, J., Martínez-García, R., & Yee-Madeira, H. (2007). An atypical coordination in hexacyanometallates: Structure and properties of hexagonal zinc phases. Journal of Physics and Chemistry of Solids, 68(9), 1630-1642. doi:10.1016/j.jpcs.2007.03.054 Siroux, B., Beaucaire, C., Tabarant, M., Benedetti, M. F., & Reiller, P. E. (2017). Adsorption of strontium and caesium onto an Na-MX80 bentonite: Experiments and building of a coherent thermodynamic modelling. Applied Geochemistry, 87, 167-175. doi:10.1016/j.apgeochem.2017.10.022 Vipin, A. K., Ling, S., & Fugetsu, B. (2016). Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous and Mesoporous Materials, 224, 84-88. doi:10.1016/j.micromeso.2015.11.024 Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., & Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences, 108(49), 1953-19534. doi:10.1073/pnas.1112058108