Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia

The monophyletic duckweeds comprising five genera within the monocot order Alismatales are neotenic, free-floating, aquatic organisms with fast vegetative propagation. Some species are considered for efficient biomass production, for life stock feeding, and for (simultaneous) wastewater phytoremedi...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Phuong T. N. Hoang, Ingo Schubert
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: 2022
Truy cập trực tuyến:http://scholar.dlu.edu.vn/handle/123456789/1571
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-1571
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
description The monophyletic duckweeds comprising five genera within the monocot order Alismatales are neotenic, free-floating, aquatic organisms with fast vegetative propagation. Some species are considered for efficient biomass production, for life stock feeding, and for (simultaneous) wastewater phytoremediation. The ancestral genus Spirodela consists of only two species, Spirodela polyrhiza and Spirodela intermedia, both with a similar small genome (~160 Mbp/1C). Reference genome drafts and a physical map of 96 BACs on the 20 chromosome pairs of S. polyrhiza strain 7498 are available and provide useful tools for further evolutionary studies within and between duckweed genera. Here we applied sequential comparative multicolor fluorescence in situ hybridization (mcFISH) to address homeologous chromosomes in S. intermedia (2n = 36), to detect chromosome rearrangements between both species and to elucidate the mechanisms which may have led to the chromosome number alteration after their evolutionary separation. Ten chromosome pairs proved to be conserved between S. polyrhiza and S. intermedia, the remaining ones experienced, depending on the assumed direction of evolution, translocations, inversion, and fissions, respectively. These results represent a first step to unravel karyotype evolution among duckweeds and are anchor points for future genome assembly of S. intermedia.
format Journal article
author Phuong T. N. Hoang
Ingo Schubert
spellingShingle Phuong T. N. Hoang
Ingo Schubert
Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia
author_facet Phuong T. N. Hoang
Ingo Schubert
author_sort Phuong T. N. Hoang
title Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia
title_short Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia
title_full Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia
title_fullStr Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia
title_full_unstemmed Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia
title_sort reconstruction of chromosome rearrangements between the two most ancestral duckweed species spirodela polyrhiza and s. intermedia
publishDate 2022
url http://scholar.dlu.edu.vn/handle/123456789/1571
_version_ 1768306089143566336
spelling oai:scholar.dlu.edu.vn:123456789-15712022-11-09T06:44:26Z Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia Phuong T. N. Hoang Ingo Schubert The monophyletic duckweeds comprising five genera within the monocot order Alismatales are neotenic, free-floating, aquatic organisms with fast vegetative propagation. Some species are considered for efficient biomass production, for life stock feeding, and for (simultaneous) wastewater phytoremediation. The ancestral genus Spirodela consists of only two species, Spirodela polyrhiza and Spirodela intermedia, both with a similar small genome (~160 Mbp/1C). Reference genome drafts and a physical map of 96 BACs on the 20 chromosome pairs of S. polyrhiza strain 7498 are available and provide useful tools for further evolutionary studies within and between duckweed genera. Here we applied sequential comparative multicolor fluorescence in situ hybridization (mcFISH) to address homeologous chromosomes in S. intermedia (2n = 36), to detect chromosome rearrangements between both species and to elucidate the mechanisms which may have led to the chromosome number alteration after their evolutionary separation. Ten chromosome pairs proved to be conserved between S. polyrhiza and S. intermedia, the remaining ones experienced, depending on the assumed direction of evolution, translocations, inversion, and fissions, respectively. These results represent a first step to unravel karyotype evolution among duckweeds and are anchor points for future genome assembly of S. intermedia. 2022-11-09T02:54:27Z 2022-11-09T02:54:27Z 2017-07 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/1571 10.1007/s00412-017-0636-7 en Chromosoma 1432-0886 Appenroth K-J, Teller S, Horn M (1996) Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol Plant 38(1):95– 106. doi:10.1007/bf02879642 Bog M, Lautenschlager U, Landrock MF, Landolt E, Fuchs J, Sowjanya Sree K, Oberprieler C, Appenroth K-J (2015) Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP). Hydrobiologia 749(1):169–182. doi:10.1007/s10750-014-2163-3 Cao HX, Vu GT, Wang W, Appenroth KJ, Messing J, Schubert I (2016) The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol 209(1):354–363. doi:10.1111/nph.13592 Chamala S, Chanderbali AS, Der JP, Lan T, Walts B, Albert VA, dePamphilis CW, Leebens-Mack J, Rounsley S, Schuster SC et al (2013) Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science 342(6165):1516–1517. doi: 10.1126/science.1241130 Geber G (1989) Zur Karyosystematik der Lemnaceae. PhD thesis University of Vienna, Vienna, Austria.:140 Gottlob-McHugh SG, Levesque M, MacKenzie K, Olson M, Yarosh O, Johnson DA (1990) Organization of the 5S rRNA genes in the soybean glycine max (L.) Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33(4):486–494 Heslop-Harrison JS, Harrison GE, Leitch IJ (1992) Reprobing of DNA: DNA in situ hybridization preparations. Trends Genet 8(11):372– 373 Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19(17):4780 Landolt E (1986) The family of Lemnaceae—a monographic study. Veröffentlichungen des Geobotanischen Institutes der Eidg Techn Hochschule, Zürich( 71):566 pp LysakMA, Berr A, Pecinka A, Schmidt R,McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 103(13):5224–5229. doi:10.1073/pnas.0510791103 Ma L, Vu GT, Schubert V, Watanabe K, Stein N, Houben A, Schubert I (2010) Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosom Res 18(7):841–850. doi: 10.1007/s10577-010-9166-3 Mandakova T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20(10):2559–2570. doi:10.1105/tpc.108.062166 Mandakova T, Joly S, KrzywinskiM,Mummenhoff K, LysakMA(2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22(7):2277–2290. doi:10.1105/tpc.110.074526 Michael TP, Bryant D, Gutierrez R, Borisjuk N, Chu P, Zhang H, Xia J, Zhou J, Peng H, El Baidouri M et al (2017) Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J. doi:10.1111/tpj.13400 Shibata F, Sahara K, Naito Y, Yasukochi Y (2009) Reprobing multicolor FISH preparations in lepidopteran chromosome. Zool Sci 26(3): 187–190. doi:10.2108/zsj.26.187 Urbanska-Worytkiewicz K (1980) Cytological variation within the family of BLemnaceae^. Veröffentlichungen des Geobotanischen Institutes der Eidg Tech Hochschule, Stiftung Rübel, in Zürich doi: 10.5169/ seals-308615 WangW, Kerstetter RA, Michael TP (2011) Evolution of genome size in duckweeds (Lemnaceae). J Bot 2011:1–9. doi:10.1155/2011/ 570319 Wang W, Haberer G, Gundlach H, Glasser C, Nussbaumer T, Luo MC, Lomsadze A, BorodovskyM, Kerstetter RA, Shanklin J et al (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311. doi:10.1038/ncomms4311