Analysis of Distance Measures for WiFi-based Indoor Positioning in Different Settings
Recently, indoor positioning systems based on wireless technologies such as WiFi fingerprinting become more popular. The nearest neighbor-based algorithms using Euclidean distance are very common and used in many fingerprinting systems. Thus, the distance measure is very important and it affects muc...
Đã lưu trong:
Những tác giả chính: | , , , |
---|---|
Định dạng: | Conference paper |
Ngôn ngữ: | English |
Được phát hành: |
IEEE
2022
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/1645 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-1645 |
---|---|
record_format |
dspace |
spelling |
oai:scholar.dlu.edu.vn:123456789-16452023-06-14T06:50:32Z Analysis of Distance Measures for WiFi-based Indoor Positioning in Different Settings Dương, Bảo Ninh He, Jing Nguyễn, Thị Lương Nguyễn, Hữu Khánh WiFi fingerprinting , indoor positioning , WKNN , distance measures Recently, indoor positioning systems based on wireless technologies such as WiFi fingerprinting become more popular. The nearest neighbor-based algorithms using Euclidean distance are very common and used in many fingerprinting systems. Thus, the distance measure is very important and it affects much to the tracking result. In this paper, we present an analytical study of using different distance measures for the weighted K-nearest neighbor algorithm to determine the position of a user. We implement five distance measures and compare the positioning results of each measure to find out the best one. To check the robustness of the measures, we change some settings when creating the radio map in the offline phase such as the number of access points or the distance between two reference points. From the experiments, it is shown that the Chi-Squared distance outperforms other distance measures since it achieves the mean error of 1.13 meters in a simple test case and 1.20 meters in a more complicated test case. Even when we change the settings, Chi-Squared distance remains the best positioning result. 1-7 2022-12-26T09:18:42Z 2022-12-26T09:18:42Z 2022-03 Conference paper Bài báo đăng trên tạp chí thuộc SCOPUS, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/1645 10.1109/IRASET52964.2022.9737848 en IEEE 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) Electronic ISBN:978-1-6654-2209-3; Print on Demand(PoD) ISBN:978-1-6654-2210-9 IEEE IEEE Xplore |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
WiFi fingerprinting , indoor positioning , WKNN , distance measures |
spellingShingle |
WiFi fingerprinting , indoor positioning , WKNN , distance measures Dương, Bảo Ninh He, Jing Nguyễn, Thị Lương Nguyễn, Hữu Khánh Analysis of Distance Measures for WiFi-based Indoor Positioning in Different Settings |
description |
Recently, indoor positioning systems based on wireless technologies such as WiFi fingerprinting become more popular. The nearest neighbor-based algorithms using Euclidean distance are very common and used in many fingerprinting systems. Thus, the distance measure is very important and it affects much to the tracking result. In this paper, we present an analytical study of using different distance measures for the weighted K-nearest neighbor algorithm to determine the position of a user. We implement five distance measures and compare the positioning results of each measure to find out the best one. To check the robustness of the measures, we change some settings when creating the radio map in the offline phase such as the number of access points or the distance between two reference points. From the experiments, it is shown that the Chi-Squared distance outperforms other distance measures since it achieves the mean error of 1.13 meters in a simple test case and 1.20 meters in a more complicated test case. Even when we change the settings, Chi-Squared distance remains the best positioning result. |
format |
Conference paper |
author |
Dương, Bảo Ninh He, Jing Nguyễn, Thị Lương Nguyễn, Hữu Khánh |
author_facet |
Dương, Bảo Ninh He, Jing Nguyễn, Thị Lương Nguyễn, Hữu Khánh |
author_sort |
Dương, Bảo Ninh |
title |
Analysis of Distance Measures for WiFi-based Indoor Positioning in Different Settings |
title_short |
Analysis of Distance Measures for WiFi-based Indoor Positioning in Different Settings |
title_full |
Analysis of Distance Measures for WiFi-based Indoor Positioning in Different Settings |
title_fullStr |
Analysis of Distance Measures for WiFi-based Indoor Positioning in Different Settings |
title_full_unstemmed |
Analysis of Distance Measures for WiFi-based Indoor Positioning in Different Settings |
title_sort |
analysis of distance measures for wifi-based indoor positioning in different settings |
publisher |
IEEE |
publishDate |
2022 |
url |
https://scholar.dlu.edu.vn/handle/123456789/1645 |
_version_ |
1778233819080425472 |