Mining Hidden Topics from Newspaper Quotations: The COVID-19 Pandemic

In this paper, we extract quotations from Al Jazeera’s news articles containing keywords related to the COVID-19 pandemic. We apply Latent Dirichlet allocation (LDA), coherence measures, and clustering algorithms to unsupervisedly explore latent topics from the dataset of about 3400 quotations to se...

全面介绍

Đã lưu trong:
书目详细资料
主要作者: Tạ, Hoàng Thắng
格式: Conference paper
语言:English
出版: 2023
在线阅读:http://scholar.dlu.edu.vn/handle/123456789/2006
标签: 添加标签
没有标签, 成为第一个标记此记录!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
实物特征
总结:In this paper, we extract quotations from Al Jazeera’s news articles containing keywords related to the COVID-19 pandemic. We apply Latent Dirichlet allocation (LDA), coherence measures, and clustering algorithms to unsupervisedly explore latent topics from the dataset of about 3400 quotations to see how coronavirus impacts human beings. By combining noun phrases as inputs before the training and Cv measure for coherence values, we obtain an average coherence value of 0.66 with a least average number of topics of 24.8. The result covers some of the top issues that our world has been facing against the COVID-19 pandemic.