Simple and Green Synthesis of Lead Sulfide Nanocrystals for Hybrid Bulk Hetero-Junction Solar Cells
High quality PbS nanocrystals (NCs) were successfully synthesized through a facile, inexpensive and reproducible hot injection method using low-cost and less-injurious thioacetamide (TAA) as a sulfur source in the presence of oleylamine (OLA) and oleic acid (OA). The as-synthesized PbS NCs showed st...
Đã lưu trong:
Những tác giả chính: | , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
American Scientific Publisher
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | http://scholar.dlu.edu.vn/handle/123456789/2190 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2190 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Green Synthesis, Nanocrystal, Thioacetamide, Hot-Injection, Blue Shift. |
spellingShingle |
Green Synthesis, Nanocrystal, Thioacetamide, Hot-Injection, Blue Shift. Trinh, Thanh Kieu Nguyen, Truong Tam Nguyen Phạm, Hầu Thanh Việt Park, Chinho Simple and Green Synthesis of Lead Sulfide Nanocrystals for Hybrid Bulk Hetero-Junction Solar Cells |
description |
High quality PbS nanocrystals (NCs) were successfully synthesized through a facile, inexpensive and reproducible hot injection method using low-cost and less-injurious thioacetamide (TAA) as a sulfur source in the presence of oleylamine (OLA) and oleic acid (OA). The as-synthesized PbS NCs showed strong absorption and photoluminescence (PL) emission in the near-infrared region. The size of the PbS NCs was easily controlled in the range, 3.8∼6 nm by varying the reaction conditions such as reaction temperature (RT), OLA/OA ratio, and Pb/S ratio. Larger sizes of PbS NCs were obtained at higher RT, and lower OLA/OA ratio, and Pb/S ratio values. The developed PbS NCs in the present study have potential application in the fabrication of solar cells. |
format |
Journal article |
author |
Trinh, Thanh Kieu Nguyen, Truong Tam Nguyen Phạm, Hầu Thanh Việt Park, Chinho |
author_facet |
Trinh, Thanh Kieu Nguyen, Truong Tam Nguyen Phạm, Hầu Thanh Việt Park, Chinho |
author_sort |
Trinh, Thanh Kieu |
title |
Simple and Green Synthesis of Lead Sulfide Nanocrystals for Hybrid Bulk Hetero-Junction Solar Cells |
title_short |
Simple and Green Synthesis of Lead Sulfide Nanocrystals for Hybrid Bulk Hetero-Junction Solar Cells |
title_full |
Simple and Green Synthesis of Lead Sulfide Nanocrystals for Hybrid Bulk Hetero-Junction Solar Cells |
title_fullStr |
Simple and Green Synthesis of Lead Sulfide Nanocrystals for Hybrid Bulk Hetero-Junction Solar Cells |
title_full_unstemmed |
Simple and Green Synthesis of Lead Sulfide Nanocrystals for Hybrid Bulk Hetero-Junction Solar Cells |
title_sort |
simple and green synthesis of lead sulfide nanocrystals for hybrid bulk hetero-junction solar cells |
publisher |
American Scientific Publisher |
publishDate |
2023 |
url |
http://scholar.dlu.edu.vn/handle/123456789/2190 |
_version_ |
1768306377251356672 |
spelling |
oai:scholar.dlu.edu.vn:123456789-21902023-05-09T13:40:03Z Simple and Green Synthesis of Lead Sulfide Nanocrystals for Hybrid Bulk Hetero-Junction Solar Cells Trinh, Thanh Kieu Nguyen, Truong Tam Nguyen Phạm, Hầu Thanh Việt Park, Chinho Green Synthesis, Nanocrystal, Thioacetamide, Hot-Injection, Blue Shift. High quality PbS nanocrystals (NCs) were successfully synthesized through a facile, inexpensive and reproducible hot injection method using low-cost and less-injurious thioacetamide (TAA) as a sulfur source in the presence of oleylamine (OLA) and oleic acid (OA). The as-synthesized PbS NCs showed strong absorption and photoluminescence (PL) emission in the near-infrared region. The size of the PbS NCs was easily controlled in the range, 3.8∼6 nm by varying the reaction conditions such as reaction temperature (RT), OLA/OA ratio, and Pb/S ratio. Larger sizes of PbS NCs were obtained at higher RT, and lower OLA/OA ratio, and Pb/S ratio values. The developed PbS NCs in the present study have potential application in the fabrication of solar cells. 8 601 - 606 2023-05-09T10:29:23Z 2023-05-09T10:29:23Z 2015-06 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2190 10.1166/sam.2016.2513 en Science of Advanced Materials 1947-2935; 1947-2943 1. I. Chang and E. R. Waclawik, RCS Adv. 4, 23505 (2014). 2. H. Fu and S. W. Tsang, Nanoscale 4, 2187 (2012). 3. K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, Appl. Phys. Lett. 97, 203501 (2010). 4. C. Piliego, L. Protesescu, S. Z. Bisri, M. V. Kovalenko, and M. A. Loi, Energy Environ. Sci. 6, 3054 (2013). 5. G. M. Zhai, A. Bezryadina, A. J. Breeze, D. L. Zhang, G. B. Alersand, and S. A. Carter, Appl. Phys. Lett. 99, 063512 (2011). 6. J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Peasad, Adv. Mater. 23, 3984 (2011). 7. D. A. R. Barkhouse, R. Debnath, I. J. Karmer, D. Zhitomirsky, A. G. P. Abraham, L. Levina, M. Furukawa, L. Etgar, M. Grazel, and E. Sargent, Adv. Mater. 23, 3134 (2011). 8. B. Hyun, J. J. Choi, K. L. Seyler, T. Hanrath, and F. W. Wise, Am. Chem. Soc. 7, 10938 (2013). 9. J. J. Choi, W. N. Wenger, R. S. Hoffman, Y. F. Lim, J. Luria, J. Jasieniak, J. A. Marohn, and T. Hanrath, Adv. Mater. 23, 3144 (2011). 10. Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinofli, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rolly, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bark, and E. H. Sargent, Nat. Mater. 13, 882 (2014). 11. Y. Firdaus, E. Vandenplas, Y. Justo, R. Gehlhaar, D. Cheyns, Z. Hens, and M. V. Auweraer, Appl. Phys. 116, 094305 (2014). 12. M. J. Speirs, B. G. H. M. Groeneveld, L. Protesescu, C. Piliego, M. V. Kovalenko, and M. A. Loi, Phys. Chem. Chem. Phys. 16, 7672 (2014). 13. C. Zhang, Z. Kang, E. Shen, E. Wang, L. Gao, F. Luo, C. Tian, C. Wang, and Y. Lan, Phys. Chem. B 110, 184 (2006). 14. H. S. H. Mohamed, M. Abdel-Hafiez, B. N. Miroshnikov, and I. N. Miroshnikova, Mater. Sci. Semi. Pro. 27, 725 (2014). 15. M. Orphanou, E. Leontidis, T. K. Leodidou, W. Caseri, F. Krumeich, and K. C. Kyriacou, Col. Inter. Sci. 302, 170 (2006). 16. A. S. Obaid, M. A. Mahdi, Y. Yusof, M. Bououdina, and Z. Hassan, Mater. Sci. Semi. Pro. 16, 971 (2013). 17. Y. Wang, A. Tang, K. Lai, C. Yang, M. Wang, H. Ye, Y. Hou, and F. Teng, Langmuir 28, 16436 (2012). 18. S. F. Wang, F. Gu, M. K. Lu, G. J. Zhou, and A. Y. Zhang, Crys. Gro. 289, 621 (2006). 19. Y. Jiao, X. Gao, J. L. Chen, J. Zhou, and X. Li, Mater. Lett. 72, 116 (2012). 20. L. Turyanska, O. Makarovsky, U. Elfurawi, A. Patane, M. W. Fay, J. W. Bowers, and H. M. Upadhyaya, Phys. Sta. Solid A 208, 2450 (2011). 21. D. Deng, J. Cao, J. Xia, Z. Qian, Y. Gu, Z. Gu, and W. J. Akers, Eur. J. Inorg. Chem. 15, 2422 (2011). 22. M. A. Hines and G. D. Scholes, Adv. Mater. 15, 1844 (2003). 23. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. Freymann, and G. A. Ozin, Phys. Chem. B 110, 671 (2006) 24. Liu, H. Yu, Z. Wu, W. Wang, J. Peng, and Y. Cao, Nanotechnology 19, 345602 (2008). 25. A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Achuck, D. J. Milliron, and B. E. Cohen, ACS Nano 6, 2686 (2012). 26. X. Peng, Adv. Mater. 15, 459 (2003). 27. V. I. Klimov, Semiconductorand Metal Nanocrystals: Synthesis and Electronic and Optical Properties, Taylor and Francis Publishers, New York (2005), Vol. 1. 28. J. W. Thomson, K. Nagashima, P. M. Macdonald, and G. A. Ozin, Am. Chem. Soc. 133, 5036 (2011). 29. I. Moreels, Y. Justo, B. Haustraete, J. C. Martin, and Z. Hens, ACS Nano 5, 2004 (2011). 30. N. Zao, T. Osedach, L. Chang, S. M. Geyer, D. Wanger, M. T. Binda, A. C. Arango, M. G. Bawendi, and V. Bulovic, ASC Nano 4, 3743 (2010). 31. K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, Appl. Phys. Lett. 92, 151115 (2008). 32. C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, Appl. Phys. Lett. 80, 1288 (2002). American Scientific Publisher |