Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance
SnS nanospheres (NSPs) were synthesized, and the effects of thermal annealing on the structural, morphological, chemical compositional and optical properties were examined. As-synthesized SnS NPSs with a mean size of 3- 4 nm underwent a solid state morphological transformation by high temperature an...
Đã lưu trong:
Những tác giả chính: | , , , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Springer US
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | http://scholar.dlu.edu.vn/handle/123456789/2192 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2192 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Tin Sulfide, Nanocrystal, Photoactive Layer, Orthorhombic, Bulk Hetero-Junction, Exciton |
spellingShingle |
Tin Sulfide, Nanocrystal, Photoactive Layer, Orthorhombic, Bulk Hetero-Junction, Exciton Nguyen, Truong Tam Nguyen Hoang, Thi Hai Ha Trinh, Thanh Kieu Phạm, Hầu Thanh Việt Smith, Patrick Ryan Park, Chinho Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance |
description |
SnS nanospheres (NSPs) were synthesized, and the effects of thermal annealing on the structural, morphological, chemical compositional and optical properties were examined. As-synthesized SnS NPSs with a mean size of 3- 4 nm underwent a solid state morphological transformation by high temperature annealing in a nitrogen environment. Upon annealing, the size of SnS NSP increased to 5-6 nm with enhanced crystallinity. Also, the photoluminescence (PL) of the nitrogen-annealed samples slightly decreased in intensity with accompanying red-shift in spectrum. The power conversion efficiency of the solar cells using a polymer and the SnS NSPs was ~0.71%. These results confirm that the SnS NSPs demonstrate a potential as an inorganic material to be used in organic-inorganic hybrid bulk heterojunction (BHJ) photovoltaic devices. |
format |
Journal article |
author |
Nguyen, Truong Tam Nguyen Hoang, Thi Hai Ha Trinh, Thanh Kieu Phạm, Hầu Thanh Việt Smith, Patrick Ryan Park, Chinho |
author_facet |
Nguyen, Truong Tam Nguyen Hoang, Thi Hai Ha Trinh, Thanh Kieu Phạm, Hầu Thanh Việt Smith, Patrick Ryan Park, Chinho |
author_sort |
Nguyen, Truong Tam Nguyen |
title |
Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance |
title_short |
Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance |
title_full |
Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance |
title_fullStr |
Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance |
title_full_unstemmed |
Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance |
title_sort |
effect of post-synthesis annealing on properties of sns nanospheres and its solar cell performance |
publisher |
Springer US |
publishDate |
2023 |
url |
http://scholar.dlu.edu.vn/handle/123456789/2192 |
_version_ |
1768306377923493888 |
spelling |
oai:scholar.dlu.edu.vn:123456789-21922023-05-09T10:45:23Z Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance Nguyen, Truong Tam Nguyen Hoang, Thi Hai Ha Trinh, Thanh Kieu Phạm, Hầu Thanh Việt Smith, Patrick Ryan Park, Chinho Tin Sulfide, Nanocrystal, Photoactive Layer, Orthorhombic, Bulk Hetero-Junction, Exciton SnS nanospheres (NSPs) were synthesized, and the effects of thermal annealing on the structural, morphological, chemical compositional and optical properties were examined. As-synthesized SnS NPSs with a mean size of 3- 4 nm underwent a solid state morphological transformation by high temperature annealing in a nitrogen environment. Upon annealing, the size of SnS NSP increased to 5-6 nm with enhanced crystallinity. Also, the photoluminescence (PL) of the nitrogen-annealed samples slightly decreased in intensity with accompanying red-shift in spectrum. The power conversion efficiency of the solar cells using a polymer and the SnS NSPs was ~0.71%. These results confirm that the SnS NSPs demonstrate a potential as an inorganic material to be used in organic-inorganic hybrid bulk heterojunction (BHJ) photovoltaic devices. 34 4 1208 - 1213 2023-05-09T10:45:17Z 2023-05-09T10:45:17Z 2016-12-10 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2192 10.1007/s11814-016-0347-4 en Korean Journal of Chemical Engineering 0256-1115; 1975-7220 1. E. Hong, T. Choi and J. H. Kim, Korean J. Chem. Eng., 32, 424 (2015). 2. H. Peng, L. Jiang, J. Huang and G. Li, J. Nanopart. Res., 9, 1163 (2007). 3. N. T. N. Truong, T. P. N. Nguyen and C. Park, Inter. J. Photoenergy, 2013, ID 146582 (2013). 4. L . Burton and A. Wash, J. Phys. Chem. C., 116, 24262 (2012). 5. K. T. R. Reddy, N. K. Reddy and R. W. Miles, Sol. Energy Mater. Sol. Cells, 90, 3041 (2006). 6. M. Sugiyama, Y. Murata, T. Shimizu, K. Ramya, C. Venkataiah, T. Sato and K. T. R. Reddy, Jpn. J. Appl. Phys., 50, 05FH03 (2011). 7. G. H. Yue, D. L. Peng, P. X. Yan, L. S. Wang, W. Wang and X. H. Luo, J. Alloys. Compd., 468, 254 (2009). 8. K. T. R. Reddy, P. Reddy, P. K. Datta and R. W. Miles, Thin Solid Films, 403, 116 (2002). 9. N. K. Reddy, Y. B. Hahn, Y. B. Devika, H. R. Sumana and K. R. Gunasekhar, J. Appl. Phys., 101, 093522 (2007). 10. P. Pramanik, P. K. Basu and S. Biswas, Thin Solid Films, 150, 269 (1987). 11. C. An, K. Tang, Y. Jin, Q. Liu, X. Chen and Y. Qian, J. Cryst. Growth, 252, 575 (2003). 12. S. Y. Hong, R. P. Biro, Y. Prior and R. Tenne, J. Am. Chem. Soc., 125, 10470 (2003). 13. J. Liu and D. Xue, Electrochimica Acta, 56, 243 (2010). 14. B. Thangaraju and P. Kaliannan, J. Phys. D: Appl. Phys., 33, 1054 (2000). 15. A. Ortiz, J. C. Alonso, M. Garcia and J. Toriz, Semicond. Sci. Technol., 11, 243 (1996). 16. L. S. Price, U. P. Parkin, A. M. E. Hardy, R. J. H. Clark, T. G. Hibbert and K. C. Molloy, Chem. Mater., 11, 1792 (1999). 17. Y. Oda, H. Shen, L. Zhao, J. Li, M. Iwamoto and H. Lin, Sci. Technol. Adv. Mater., 15, 035006 (2014). 18. S. Sohila, M. Rajalakshmi, C. Chosh, A. K. Arora and C. Muthamizhchelvan, J. Alloys Compound, 509, 5843 (2011). 19. S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. Kalavathi, C. Ghosh, R. Divakar, C. N. Venkiteswaran, N. G. Muralidharan, A. K. Arora and E. Mohandas, Mater. Lett., 65, 1148 (2011). 20. R. S. Zeferino, U. Pal, R. Melendrez and M. B. Flores, Adv. Nano Res., 1, 193 (2013). 21. L. E. Brus, J. Chem. Phys., 80, 4403 (1984). 22. A. P. Alivisatos, J. Phys. Chem., 100, 13226 (1996). 23. Y. P. Varshni, Physica., 34, 149 (1967). 24. S. Luo, J. Fan, W. Liu, M. Zhang,Z. Song, C. Lin, X. Wu and P. K Chu, Nanotechnology, 17, 1695 (2006). 25. L. S. Price, I. P. Parkin, M. N. Field, A. M. E. Hardy, R. J. H. Clark, T. G. Hibbert and K. C. Molloy, J. Mater. Chem., 10, 527 (2000). 26. Y. Zhao, Z. Zhang, H. Dang and W. Liu, Mater. Sci. Eng. B., 113, 175 (2004). 27. S. D. Baranovskii, M. Wiemer, A. V. Nenashev, F. Jansson and F. Gebhard, J. Phys. Chem. Lett., 3, 1214 (2012). 28. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 270, 1789 (1995). 29. I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi and J. K. Olesiak, J. Phys. Chem., 114, 12784 (2010). 30. P. E. Shaw, A. Ruseckas and I. D. Samuel, Adv. Mater., 20, 3516 (2008). Springer US |