Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance

SnS nanospheres (NSPs) were synthesized, and the effects of thermal annealing on the structural, morphological, chemical compositional and optical properties were examined. As-synthesized SnS NPSs with a mean size of 3- 4 nm underwent a solid state morphological transformation by high temperature an...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Nguyen, Truong Tam Nguyen, Hoang, Thi Hai Ha, Trinh, Thanh Kieu, Phạm, Hầu Thanh Việt, Smith, Patrick Ryan, Park, Chinho
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Springer US 2023
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/handle/123456789/2192
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-2192
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Tin Sulfide, Nanocrystal, Photoactive Layer, Orthorhombic, Bulk Hetero-Junction, Exciton
spellingShingle Tin Sulfide, Nanocrystal, Photoactive Layer, Orthorhombic, Bulk Hetero-Junction, Exciton
Nguyen, Truong Tam Nguyen
Hoang, Thi Hai Ha
Trinh, Thanh Kieu
Phạm, Hầu Thanh Việt
Smith, Patrick Ryan
Park, Chinho
Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance
description SnS nanospheres (NSPs) were synthesized, and the effects of thermal annealing on the structural, morphological, chemical compositional and optical properties were examined. As-synthesized SnS NPSs with a mean size of 3- 4 nm underwent a solid state morphological transformation by high temperature annealing in a nitrogen environment. Upon annealing, the size of SnS NSP increased to 5-6 nm with enhanced crystallinity. Also, the photoluminescence (PL) of the nitrogen-annealed samples slightly decreased in intensity with accompanying red-shift in spectrum. The power conversion efficiency of the solar cells using a polymer and the SnS NSPs was ~0.71%. These results confirm that the SnS NSPs demonstrate a potential as an inorganic material to be used in organic-inorganic hybrid bulk heterojunction (BHJ) photovoltaic devices.
format Journal article
author Nguyen, Truong Tam Nguyen
Hoang, Thi Hai Ha
Trinh, Thanh Kieu
Phạm, Hầu Thanh Việt
Smith, Patrick Ryan
Park, Chinho
author_facet Nguyen, Truong Tam Nguyen
Hoang, Thi Hai Ha
Trinh, Thanh Kieu
Phạm, Hầu Thanh Việt
Smith, Patrick Ryan
Park, Chinho
author_sort Nguyen, Truong Tam Nguyen
title Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance
title_short Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance
title_full Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance
title_fullStr Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance
title_full_unstemmed Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance
title_sort effect of post-synthesis annealing on properties of sns nanospheres and its solar cell performance
publisher Springer US
publishDate 2023
url http://scholar.dlu.edu.vn/handle/123456789/2192
_version_ 1768306377923493888
spelling oai:scholar.dlu.edu.vn:123456789-21922023-05-09T10:45:23Z Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance Nguyen, Truong Tam Nguyen Hoang, Thi Hai Ha Trinh, Thanh Kieu Phạm, Hầu Thanh Việt Smith, Patrick Ryan Park, Chinho Tin Sulfide, Nanocrystal, Photoactive Layer, Orthorhombic, Bulk Hetero-Junction, Exciton SnS nanospheres (NSPs) were synthesized, and the effects of thermal annealing on the structural, morphological, chemical compositional and optical properties were examined. As-synthesized SnS NPSs with a mean size of 3- 4 nm underwent a solid state morphological transformation by high temperature annealing in a nitrogen environment. Upon annealing, the size of SnS NSP increased to 5-6 nm with enhanced crystallinity. Also, the photoluminescence (PL) of the nitrogen-annealed samples slightly decreased in intensity with accompanying red-shift in spectrum. The power conversion efficiency of the solar cells using a polymer and the SnS NSPs was ~0.71%. These results confirm that the SnS NSPs demonstrate a potential as an inorganic material to be used in organic-inorganic hybrid bulk heterojunction (BHJ) photovoltaic devices. 34 4 1208 - 1213 2023-05-09T10:45:17Z 2023-05-09T10:45:17Z 2016-12-10 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2192 10.1007/s11814-016-0347-4 en Korean Journal of Chemical Engineering 0256-1115; 1975-7220 1. E. Hong, T. Choi and J. H. Kim, Korean J. Chem. Eng., 32, 424 (2015). 2. H. Peng, L. Jiang, J. Huang and G. Li, J. Nanopart. Res., 9, 1163 (2007). 3. N. T. N. Truong, T. P. N. Nguyen and C. Park, Inter. J. Photoenergy, 2013, ID 146582 (2013). 4. L . Burton and A. Wash, J. Phys. Chem. C., 116, 24262 (2012). 5. K. T. R. Reddy, N. K. Reddy and R. W. Miles, Sol. Energy Mater. Sol. Cells, 90, 3041 (2006). 6. M. Sugiyama, Y. Murata, T. Shimizu, K. Ramya, C. Venkataiah, T. Sato and K. T. R. Reddy, Jpn. J. Appl. Phys., 50, 05FH03 (2011). 7. G. H. Yue, D. L. Peng, P. X. Yan, L. S. Wang, W. Wang and X. H. Luo, J. Alloys. Compd., 468, 254 (2009). 8. K. T. R. Reddy, P. Reddy, P. K. Datta and R. W. Miles, Thin Solid Films, 403, 116 (2002). 9. N. K. Reddy, Y. B. Hahn, Y. B. Devika, H. R. Sumana and K. R. Gunasekhar, J. Appl. Phys., 101, 093522 (2007). 10. P. Pramanik, P. K. Basu and S. Biswas, Thin Solid Films, 150, 269 (1987). 11. C. An, K. Tang, Y. Jin, Q. Liu, X. Chen and Y. Qian, J. Cryst. Growth, 252, 575 (2003). 12. S. Y. Hong, R. P. Biro, Y. Prior and R. Tenne, J. Am. Chem. Soc., 125, 10470 (2003). 13. J. Liu and D. Xue, Electrochimica Acta, 56, 243 (2010). 14. B. Thangaraju and P. Kaliannan, J. Phys. D: Appl. Phys., 33, 1054 (2000). 15. A. Ortiz, J. C. Alonso, M. Garcia and J. Toriz, Semicond. Sci. Technol., 11, 243 (1996). 16. L. S. Price, U. P. Parkin, A. M. E. Hardy, R. J. H. Clark, T. G. Hibbert and K. C. Molloy, Chem. Mater., 11, 1792 (1999). 17. Y. Oda, H. Shen, L. Zhao, J. Li, M. Iwamoto and H. Lin, Sci. Technol. Adv. Mater., 15, 035006 (2014). 18. S. Sohila, M. Rajalakshmi, C. Chosh, A. K. Arora and C. Muthamizhchelvan, J. Alloys Compound, 509, 5843 (2011). 19. S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. Kalavathi, C. Ghosh, R. Divakar, C. N. Venkiteswaran, N. G. Muralidharan, A. K. Arora and E. Mohandas, Mater. Lett., 65, 1148 (2011). 20. R. S. Zeferino, U. Pal, R. Melendrez and M. B. Flores, Adv. Nano Res., 1, 193 (2013). 21. L. E. Brus, J. Chem. Phys., 80, 4403 (1984). 22. A. P. Alivisatos, J. Phys. Chem., 100, 13226 (1996). 23. Y. P. Varshni, Physica., 34, 149 (1967). 24. S. Luo, J. Fan, W. Liu, M. Zhang,Z. Song, C. Lin, X. Wu and P. K Chu, Nanotechnology, 17, 1695 (2006). 25. L. S. Price, I. P. Parkin, M. N. Field, A. M. E. Hardy, R. J. H. Clark, T. G. Hibbert and K. C. Molloy, J. Mater. Chem., 10, 527 (2000). 26. Y. Zhao, Z. Zhang, H. Dang and W. Liu, Mater. Sci. Eng. B., 113, 175 (2004). 27. S. D. Baranovskii, M. Wiemer, A. V. Nenashev, F. Jansson and F. Gebhard, J. Phys. Chem. Lett., 3, 1214 (2012). 28. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 270, 1789 (1995). 29. I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi and J. K. Olesiak, J. Phys. Chem., 114, 12784 (2010). 30. P. E. Shaw, A. Ruseckas and I. D. Samuel, Adv. Mater., 20, 3516 (2008). Springer US