Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells
Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b$]dithiophene-2,6-diy...
Đã lưu trong:
Những tác giả chính: | , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Institute of Pure and Applied Physics
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | http://scholar.dlu.edu.vn/handle/123456789/2193 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2193 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Liquid eutectic GaIn; organic solar cells |
spellingShingle |
Liquid eutectic GaIn; organic solar cells Phạm, Hầu Thanh Việt Trinh, Thanh Kieu Truong, Nguyen Tam Nguyen Park, Chinho Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells |
description |
Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b$]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thienophenediyl]:[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PCBM) bulk heterojunction organic solar cell with liquid eutectic gallium–indium (EGaIn) electrode as an alternative to the common Al electrode. The insertion of a thin poly(ethylene oxide) (PEO) layer after depositing organic photoactive layer could help prevent the diffusion of liquid EGaIn into the active layer and allow the deposition of the EGaIn electrode. The PEO interfacial layer was formed by spin-coating from a mixed solvent of alcohol and water. Among different alcohol+water (methanol, ethanol, ethylene glycol, n-propanol, isopropanol, and isobutanol) mixed solvent tested, the n-propanol+water mixed solvent showed the greatest enhancement to the performance of OPVs. The improved device performance was attributed to the reactivity of mixed solvent n-propanol+water toward the surface of PTB7:PCBM active layer, which could help optimize surface morphology. |
format |
Journal article |
author |
Phạm, Hầu Thanh Việt Trinh, Thanh Kieu Truong, Nguyen Tam Nguyen Park, Chinho |
author_facet |
Phạm, Hầu Thanh Việt Trinh, Thanh Kieu Truong, Nguyen Tam Nguyen Park, Chinho |
author_sort |
Phạm, Hầu Thanh Việt |
title |
Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells |
title_short |
Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells |
title_full |
Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells |
title_fullStr |
Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells |
title_full_unstemmed |
Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells |
title_sort |
liquid eutectic gain as an alternative electrode for ptb7: pcbm organic solar cells |
publisher |
Institute of Pure and Applied Physics |
publishDate |
2023 |
url |
http://scholar.dlu.edu.vn/handle/123456789/2193 |
_version_ |
1768306378250649600 |
spelling |
oai:scholar.dlu.edu.vn:123456789-21932023-05-09T10:50:27Z Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells Phạm, Hầu Thanh Việt Trinh, Thanh Kieu Truong, Nguyen Tam Nguyen Park, Chinho Liquid eutectic GaIn; organic solar cells Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b$]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thienophenediyl]:[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PCBM) bulk heterojunction organic solar cell with liquid eutectic gallium–indium (EGaIn) electrode as an alternative to the common Al electrode. The insertion of a thin poly(ethylene oxide) (PEO) layer after depositing organic photoactive layer could help prevent the diffusion of liquid EGaIn into the active layer and allow the deposition of the EGaIn electrode. The PEO interfacial layer was formed by spin-coating from a mixed solvent of alcohol and water. Among different alcohol+water (methanol, ethanol, ethylene glycol, n-propanol, isopropanol, and isobutanol) mixed solvent tested, the n-propanol+water mixed solvent showed the greatest enhancement to the performance of OPVs. The improved device performance was attributed to the reactivity of mixed solvent n-propanol+water toward the surface of PTB7:PCBM active layer, which could help optimize surface morphology. 56 046501 2023-05-09T10:50:22Z 2023-05-09T10:50:22Z 2017-02-27 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2193 10.7567/JJAP.56.046501 en Japanese Journal of Applied Physics 0021-4922; 1347-4065 1) H. Kim, S. Nam, J. Jeong, S. Lee, J. Seo, H. Han, and Y. Kim, Korean J. Chem. Eng. 31, 1095 (2014). 2) J. E. Allen and C. T. Black, ACS Nano 5, 7986 (2011). 3) C. Liu, C. Yi, K. Wang, Y. Yang, R. S. Bhatta, M. Tsige, S. Xiao, and X. Gong, ACS Appl. Mater. Interfaces 7, 4928 (2015). 4) Y. Jeon, T. Kim, J. Kim, and J. Hong, New J. Chem. 39, 9591 (2015). 5) S. Wang, J. Yang, Z. Zhang, Y. Hu, X. Cao, H. Li, Y. Tao, Y. Li, and W. Huang, RSC Adv. 5, 68192 (2015). 6) Z. Yi, W. Ni, Q. Zhang, M. Li, B. Kan, X. Wan, and Y. Chen, J. Mater. Chem. C 2, 7247 (2014). 7) A. L. Ayzner, D. D. Wanger, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, J. Phys. Chem. C 112, 18711 (2008). 8) E. Verploegen, R. Mondal, C. J. Bettinger, S. Sok, M. F. Toney, and Z. Bao, Adv. Funct. Mater. 20, 3519 (2010). 9) G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007). 10) C. V. Kumar, L. Cabau, A. Viterisi, S. Biswas, G. D. Sharma, and E. Palomares, J. Phys. Chem. C 119, 20871 (2015). 11) H.-C. Liao, C.-C. Ho, C.-Y. Chang, M.-H. Jao, S. B. Darling, and W.-F. Su, Mater. Today 16 [9], 326 (2013). 12) K. Schmidt, C. J. Tassone, J. R. Niskala, A. T. Yiu, O. P. Lee, T. M. Weiss, C. Wang, J. M. J. Fréchet, P. M. Beaujuge, and M. F. Toney, Adv. Mater. 26, 300 (2014). 13) S. Lattante, Electronics 3, 132 (2014). 14) L. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575 (2010). 15) J. H. Park, T. Lee, B. Chin, D. Wang, and O. Park, Macromol. Rapid Commun. 31, 2095 (2010). 16) M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, Adv. Funct. Mater. 18, 1097 (2008). 17) F. Ongul, S. A. Yuksel, S. Bozar, G. Cakmak, H. Y. Guney, D. A. M. Egbe, and S. Gunes, J. Phys. D 48, 175102 (2015). 18) A. D. Pasquier, S. Miller, and M. Chhowalla, Sol. Energy Mater. Sol. Cells 90, 1828 (2006). 19) N. K. Elumalai, C. Vijila, R. Jose, A. Uddin, and S. Ramakrishna, Mater. Renewable Sustainable Energy 4, 11 (2015). 20) D. L. Ho, B. Hammouda, S. R. Kline, and W.-R. Chen, J. Polym. Sci., Part B 44, 557 (2006). 21) T.-F. Guo, F.-S. Yang, Z.-J. Tsai, T.-C. Wen, S.-N. Hsieh, and Y.-S. Fu, Appl. Phys. Lett. 87, 013504 (2005). 22) J. Jeng, M. Lin, Y. Hsu, T. Wen, and T. Guo, Adv. Energy Mater. 1, 1192 (2011). 23) F. Chen, Q. Xu, and Y. Yang, Appl. Phys. Lett. 84, 3181 (2004). 24) S. Shao, K. Zheng, T. Pullerits, and F. Zhang, ACS Appl. Mater. Interfaces 5, 380 (2013). 25) F. Zhang, M. Ceder, and O. Inganäs, Adv. Mater. 19, 1835 (2007). 26) M. Thambidurai, J. Y. Kim, Y. Ko, H. Song, H. Shin, J. Song, Y. Lee, N. Muthukumarasamy, D. Velauthapillai, and C. Lee, Nanoscale 6, 8585 (2014). 27) F. Bordi, C. Cametti, and A. Di Biasio, J. Phys. Chem. 92, 4772 (1988). 28) S. Guo, B. Cao, W. Wang, J. Moulin, and P. M. Buschbaum, ACS Appl. Mater. Interfaces 7, 4641 (2015). 29) H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T. Q. Nguyen, and A. J. Heeger, Adv. Mater. 25, 1646 (2013). 30) J. Kniepert, I. Lange, J. Heidbrink, J. Kurpiers, T. J. K. Brenner, L. J. A. Koster, and D. Neher, J. Phys. Chem. C 119, 8310 (2015). 31) B. Ebenhoch, S. A. J. Thomson, K. Genevicius, G. Juška, and I. D. W. Samuel, Org. Electron. 22, 62 (2015). 32) J. Schafferhans, A. Baumann, C. Deibel, and V. Dyakonov, Appl. Phys. Lett. 93, 093303 (2008). 33) J. Huang, Y. Hsiao, E. Richard, C. Chen, P. Chen, G. Li, C. Chu, and Y. Yang, Appl. Phys. Lett. 103, 043304 (2013). 34) J. Zhang, S. Lee, and B. Sun, Electrochim. Acta 146, 845 (2014). 35) W. Kim, J. K. Kim, E. Kim, T. K. Ahn, D. H. Wang, and J. H. Park, J. Phys. Chem. C 119, 5954 (2015). 36) A. Li and A. W. Andren, Environ. Sci. Technol. 28, 47 (1994). Institute of Pure and Applied Physics |