Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells

Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b$]dithiophene-2,6-diy...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Phạm, Hầu Thanh Việt, Trinh, Thanh Kieu, Truong, Nguyen Tam Nguyen, Park, Chinho
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Institute of Pure and Applied Physics 2023
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/handle/123456789/2193
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-2193
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Liquid eutectic GaIn; organic solar cells
spellingShingle Liquid eutectic GaIn; organic solar cells
Phạm, Hầu Thanh Việt
Trinh, Thanh Kieu
Truong, Nguyen Tam Nguyen
Park, Chinho
Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells
description Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b$]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thienophenediyl]:[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PCBM) bulk heterojunction organic solar cell with liquid eutectic gallium–indium (EGaIn) electrode as an alternative to the common Al electrode. The insertion of a thin poly(ethylene oxide) (PEO) layer after depositing organic photoactive layer could help prevent the diffusion of liquid EGaIn into the active layer and allow the deposition of the EGaIn electrode. The PEO interfacial layer was formed by spin-coating from a mixed solvent of alcohol and water. Among different alcohol+water (methanol, ethanol, ethylene glycol, n-propanol, isopropanol, and isobutanol) mixed solvent tested, the n-propanol+water mixed solvent showed the greatest enhancement to the performance of OPVs. The improved device performance was attributed to the reactivity of mixed solvent n-propanol+water toward the surface of PTB7:PCBM active layer, which could help optimize surface morphology.
format Journal article
author Phạm, Hầu Thanh Việt
Trinh, Thanh Kieu
Truong, Nguyen Tam Nguyen
Park, Chinho
author_facet Phạm, Hầu Thanh Việt
Trinh, Thanh Kieu
Truong, Nguyen Tam Nguyen
Park, Chinho
author_sort Phạm, Hầu Thanh Việt
title Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells
title_short Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells
title_full Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells
title_fullStr Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells
title_full_unstemmed Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells
title_sort liquid eutectic gain as an alternative electrode for ptb7: pcbm organic solar cells
publisher Institute of Pure and Applied Physics
publishDate 2023
url http://scholar.dlu.edu.vn/handle/123456789/2193
_version_ 1768306378250649600
spelling oai:scholar.dlu.edu.vn:123456789-21932023-05-09T10:50:27Z Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells Phạm, Hầu Thanh Việt Trinh, Thanh Kieu Truong, Nguyen Tam Nguyen Park, Chinho Liquid eutectic GaIn; organic solar cells Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b$]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thienophenediyl]:[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PCBM) bulk heterojunction organic solar cell with liquid eutectic gallium–indium (EGaIn) electrode as an alternative to the common Al electrode. The insertion of a thin poly(ethylene oxide) (PEO) layer after depositing organic photoactive layer could help prevent the diffusion of liquid EGaIn into the active layer and allow the deposition of the EGaIn electrode. The PEO interfacial layer was formed by spin-coating from a mixed solvent of alcohol and water. Among different alcohol+water (methanol, ethanol, ethylene glycol, n-propanol, isopropanol, and isobutanol) mixed solvent tested, the n-propanol+water mixed solvent showed the greatest enhancement to the performance of OPVs. The improved device performance was attributed to the reactivity of mixed solvent n-propanol+water toward the surface of PTB7:PCBM active layer, which could help optimize surface morphology. 56 046501 2023-05-09T10:50:22Z 2023-05-09T10:50:22Z 2017-02-27 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2193 10.7567/JJAP.56.046501 en Japanese Journal of Applied Physics 0021-4922; 1347-4065 1) H. Kim, S. Nam, J. Jeong, S. Lee, J. Seo, H. Han, and Y. Kim, Korean J. Chem. Eng. 31, 1095 (2014). 2) J. E. Allen and C. T. Black, ACS Nano 5, 7986 (2011). 3) C. Liu, C. Yi, K. Wang, Y. Yang, R. S. Bhatta, M. Tsige, S. Xiao, and X. Gong, ACS Appl. Mater. Interfaces 7, 4928 (2015). 4) Y. Jeon, T. Kim, J. Kim, and J. Hong, New J. Chem. 39, 9591 (2015). 5) S. Wang, J. Yang, Z. Zhang, Y. Hu, X. Cao, H. Li, Y. Tao, Y. Li, and W. Huang, RSC Adv. 5, 68192 (2015). 6) Z. Yi, W. Ni, Q. Zhang, M. Li, B. Kan, X. Wan, and Y. Chen, J. Mater. Chem. C 2, 7247 (2014). 7) A. L. Ayzner, D. D. Wanger, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, J. Phys. Chem. C 112, 18711 (2008). 8) E. Verploegen, R. Mondal, C. J. Bettinger, S. Sok, M. F. Toney, and Z. Bao, Adv. Funct. Mater. 20, 3519 (2010). 9) G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007). 10) C. V. Kumar, L. Cabau, A. Viterisi, S. Biswas, G. D. Sharma, and E. Palomares, J. Phys. Chem. C 119, 20871 (2015). 11) H.-C. Liao, C.-C. Ho, C.-Y. Chang, M.-H. Jao, S. B. Darling, and W.-F. Su, Mater. Today 16 [9], 326 (2013). 12) K. Schmidt, C. J. Tassone, J. R. Niskala, A. T. Yiu, O. P. Lee, T. M. Weiss, C. Wang, J. M. J. Fréchet, P. M. Beaujuge, and M. F. Toney, Adv. Mater. 26, 300 (2014). 13) S. Lattante, Electronics 3, 132 (2014). 14) L. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575 (2010). 15) J. H. Park, T. Lee, B. Chin, D. Wang, and O. Park, Macromol. Rapid Commun. 31, 2095 (2010). 16) M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, Adv. Funct. Mater. 18, 1097 (2008). 17) F. Ongul, S. A. Yuksel, S. Bozar, G. Cakmak, H. Y. Guney, D. A. M. Egbe, and S. Gunes, J. Phys. D 48, 175102 (2015). 18) A. D. Pasquier, S. Miller, and M. Chhowalla, Sol. Energy Mater. Sol. Cells 90, 1828 (2006). 19) N. K. Elumalai, C. Vijila, R. Jose, A. Uddin, and S. Ramakrishna, Mater. Renewable Sustainable Energy 4, 11 (2015). 20) D. L. Ho, B. Hammouda, S. R. Kline, and W.-R. Chen, J. Polym. Sci., Part B 44, 557 (2006). 21) T.-F. Guo, F.-S. Yang, Z.-J. Tsai, T.-C. Wen, S.-N. Hsieh, and Y.-S. Fu, Appl. Phys. Lett. 87, 013504 (2005). 22) J. Jeng, M. Lin, Y. Hsu, T. Wen, and T. Guo, Adv. Energy Mater. 1, 1192 (2011). 23) F. Chen, Q. Xu, and Y. Yang, Appl. Phys. Lett. 84, 3181 (2004). 24) S. Shao, K. Zheng, T. Pullerits, and F. Zhang, ACS Appl. Mater. Interfaces 5, 380 (2013). 25) F. Zhang, M. Ceder, and O. Inganäs, Adv. Mater. 19, 1835 (2007). 26) M. Thambidurai, J. Y. Kim, Y. Ko, H. Song, H. Shin, J. Song, Y. Lee, N. Muthukumarasamy, D. Velauthapillai, and C. Lee, Nanoscale 6, 8585 (2014). 27) F. Bordi, C. Cametti, and A. Di Biasio, J. Phys. Chem. 92, 4772 (1988). 28) S. Guo, B. Cao, W. Wang, J. Moulin, and P. M. Buschbaum, ACS Appl. Mater. Interfaces 7, 4641 (2015). 29) H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T. Q. Nguyen, and A. J. Heeger, Adv. Mater. 25, 1646 (2013). 30) J. Kniepert, I. Lange, J. Heidbrink, J. Kurpiers, T. J. K. Brenner, L. J. A. Koster, and D. Neher, J. Phys. Chem. C 119, 8310 (2015). 31) B. Ebenhoch, S. A. J. Thomson, K. Genevicius, G. Juška, and I. D. W. Samuel, Org. Electron. 22, 62 (2015). 32) J. Schafferhans, A. Baumann, C. Deibel, and V. Dyakonov, Appl. Phys. Lett. 93, 093303 (2008). 33) J. Huang, Y. Hsiao, E. Richard, C. Chen, P. Chen, G. Li, C. Chu, and Y. Yang, Appl. Phys. Lett. 103, 043304 (2013). 34) J. Zhang, S. Lee, and B. Sun, Electrochim. Acta 146, 845 (2014). 35) W. Kim, J. K. Kim, E. Kim, T. K. Ahn, D. H. Wang, and J. H. Park, J. Phys. Chem. C 119, 5954 (2015). 36) A. Li and A. W. Andren, Environ. Sci. Technol. 28, 47 (1994). Institute of Pure and Applied Physics