Effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from FeS2 nano-powder

Iron pyrite (FeS2) thin films were fabricated by spin coating the solution of FeS2 nanocrystals of ~40 nm in size on glass substrates, followed by annealing in a sulfur environment at different temperatures. The effect of sulfurization temperature on the morphology, structural, optical and electrica...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Thanh Kieu Trinh, Nguyen, Truong Tam Nguyen, Phạm, Hầu Thanh Việt, Kim, Hyoeun, Park, Chinho
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Springer US 2023
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/handle/123456789/2194
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-2194
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Thin Film, Sulfurization, Morphology, FeS2 Nano-powder, Spin Coating
spellingShingle Thin Film, Sulfurization, Morphology, FeS2 Nano-powder, Spin Coating
Thanh Kieu Trinh
Nguyen, Truong Tam Nguyen
Phạm, Hầu Thanh Việt
Kim, Hyoeun
Park, Chinho
Effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from FeS2 nano-powder
description Iron pyrite (FeS2) thin films were fabricated by spin coating the solution of FeS2 nanocrystals of ~40 nm in size on glass substrates, followed by annealing in a sulfur environment at different temperatures. The effect of sulfurization temperature on the morphology, structural, optical and electrical properties was investigated. With increase of the sulfurization temperature, the grain size and crystallinity of the films was improved, although some cracks and voids were observed on the surface of thin films. The band gap of the FeS2 films was decreased at higher sulfurization temperature. The electrical properties were also changed, including the increasing in resistivity and the decrease in Hall mobility, with increase of sulfurization temperature. The change in the optical and electrical properties of the FeS2 thin films was explained based on the changes of phase, morphology, surface, and grain boundary property.
format Journal article
author Thanh Kieu Trinh
Nguyen, Truong Tam Nguyen
Phạm, Hầu Thanh Việt
Kim, Hyoeun
Park, Chinho
author_facet Thanh Kieu Trinh
Nguyen, Truong Tam Nguyen
Phạm, Hầu Thanh Việt
Kim, Hyoeun
Park, Chinho
author_sort Thanh Kieu Trinh
title Effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from FeS2 nano-powder
title_short Effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from FeS2 nano-powder
title_full Effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from FeS2 nano-powder
title_fullStr Effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from FeS2 nano-powder
title_full_unstemmed Effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from FeS2 nano-powder
title_sort effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from fes2 nano-powder
publisher Springer US
publishDate 2023
url http://scholar.dlu.edu.vn/handle/123456789/2194
_version_ 1768306378578853888
spelling oai:scholar.dlu.edu.vn:123456789-21942023-05-09T10:56:24Z Effect of sulfur annealing on the morphological, structural, optical and electrical properties of iron pyrite thin films formed from FeS2 nano-powder Thanh Kieu Trinh Nguyen, Truong Tam Nguyen Phạm, Hầu Thanh Việt Kim, Hyoeun Park, Chinho Thin Film, Sulfurization, Morphology, FeS2 Nano-powder, Spin Coating Iron pyrite (FeS2) thin films were fabricated by spin coating the solution of FeS2 nanocrystals of ~40 nm in size on glass substrates, followed by annealing in a sulfur environment at different temperatures. The effect of sulfurization temperature on the morphology, structural, optical and electrical properties was investigated. With increase of the sulfurization temperature, the grain size and crystallinity of the films was improved, although some cracks and voids were observed on the surface of thin films. The band gap of the FeS2 films was decreased at higher sulfurization temperature. The electrical properties were also changed, including the increasing in resistivity and the decrease in Hall mobility, with increase of sulfurization temperature. The change in the optical and electrical properties of the FeS2 thin films was explained based on the changes of phase, morphology, surface, and grain boundary property. 35 7 1525 - 1531 2023-05-09T10:56:19Z 2023-05-09T10:56:19Z 2018-04-05 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2194 10.1007/s11814-018-0060-6 en Korean Journal of Chemical Engineering 0256-1115; 1975-7220 1. C. Wadia, A. P. Alivisatos and A. M. Kammen, Environ. Sci. Technol., 43, 2072 (2009). 2. F. Alharbi, J. D. Bass, A. Salhi, A. Alyamani, H. Kim and R. D. Miller, Renewable Energy, 36, 2753 (2011). 3. Y. Bi, C. L. Exstrom, S. A. Darveau and I. Huang, Nano Lett., 11, 4953 (2012). 4. C. Steinhagen, T. B. Hatvey, C. J. Stolle, J. Harris and B. A. Korgel, J. Phys. Chem. Lett., 3, 2352 (2012). 5. L. Yu, S. Lany, R. Kykyneshi, V. Jieratum, R. Ravichandran, B. Pelatt, E. Altschul, H. A. S. Platt, J. F. Wage, D. A. Kesler and A. Zunger. Adv. Energy Mater., 1, 748 (2011). 6. T. Nakada, H. Ohbo, T. Watababe, H. Nakazawa, M. Matsui and A. Kunioka, Sol. Ener. Mater and Sol. Cells, 49, 285 (1997). 7. C. Sanchez, C. Heras and I. J. Ferrer, SPIE, 1729, 172 (1990). 8. A. Yamamoto, N. Makamura, A. Seki, E. L. Li, A. Hashimoto and S. Nakamura, Sol. Energy Matt. Sol. Cells, 75, 451 (2003). 9. Y. Dong, Y. Yeng, H. Duan, Y. Sun and Y. Chen, Matt. Lett., 592398 (2005). 10. V. Aluri, K. T. R Reddy and Y. M. Reddy. Nanotechnol. Rev., 4, 469 (2015). 11. C. Delas Heras and G. Lifante, J. Appl. Phys., 82, 5132 (1997). 12. S. Seefeld, M. Limpinsel, Y. Liu, A. Weber, Y. Zhang, N. Berry, Y. J. Kwon, C. L. Perkins, J. C. Hemmiger, R. Wu and M. Law, J. Am. Chem. Soc., 135, 4412 (2013). 13. J. Puthussery, S. Seefeld, N. Berry, M. Gibbs and M. Law, J. Am. Chem. Soc., 133, 716 (2011). 14. Z. Shi, A. H. Jayatissa and F. C. Peiris, J. Mater. Sci.: Mater. Electron., 27, 535 (2015). 15. S. Hsiao, K. Wu, S. Huang, S. Liu, S. Chiu and L. Chou, The Jan. Soc. Appl. Phys., 8, 201 (2015). 16. B. Holger, V. S. Elena, A. Robert, I. Mekis, A. Kornowski, G. Grubel and H. Weller, Langmuir, 21, 1931 (2005). 17. B. Mao, Q. Dong, C. L. Exstrom and J. Huang, Thin Solid Film, 562, 361 (2014). 18. F. Wang, L. Huang, Z. Luan, J. Huang and L. Meng, Mater. Chem. Phys., 132, 505 (2012). 19. R. J. Soukup, P. Prabukantha, N. J. Lanno, A. Sarkar, C. A. Kamler, et al., J. Vac. Sci. Technol. A, 29, 11001 (2011). 20. H. W. Mesbitt, M. Saini, H. Hochst, G. M. Bancroft, A. G. Schaufuss and R. Szargan, American Mineralogist, 85, 850 (2000). 21. I. E. Dubois, S. Holgersson and S. Allard, Water- rock interaction, Taylor & Francis Publication, London, 717 (2010). 22. R. Murphy and D. R. Strongin, Surface Science Reports, 64, 1 (2009). 23. S. Chaturvedi, R. Katz, J. Guevremont, M. A. Choon and D. R. Strong, American Mineralogist, 81, 261 (1996). 24. M. Huska, M. Koskenlinna and L. Ninisto, J. Appl. Chem. Biotechnol., 26, 129 (1916). 25. C. Delas Heras, I. J. Ferrer, D. M. Nevskaia and C. Sanches, J. Appl. Phys., 74, 4551 (1993). 26. F. wang, L. Huang, Z. Luan, J. Huang and L. Meng, Mater. Chem. Phys., 132, 505 (2012). 27. C. D. Geras and G. Lifante, J. Appl. Phys., 82, 5132 (1997). 28. W. Li, M. Dolinger, A. Vaneski, A. L. Rogach, F. Jackel and J. Feldmann, J. Mater. Chem., 21, 17946 (2011). 29. S. Shukla, G. Xing, H. Ge, R. R. Prabhakar, S. Mathew, Z. Su, V. Nalla, T. Venkatesan, N. Mathews, T. Sritharan, T. C. Sum and Q. Xiong, ACS Nano, 10, 4431 (2016). 30. I. J. Ferrer, D. M. Nevskaia, C. Delas Heras and C. Sanches, Solid State Communications, 74, 913 (1990). 31. D. F. Pridmore and R. T. Shuey, American Mineralogist, 61, 248 (1976). 32. L. Huang, Y. Liu and L. Meng, J. Mater. Sci. Technol., 25, 237 (2009). Springer US