Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells

Ni–graphite core–shell nanoparticles (CSNPs), which consisted of Ni nanoparticles (NPs) wrapped with several graphene layers, were grown by the thermal reduction of NiO NPs using H2. The effect of the synthesis temperature (800, 900, 1000, and 1100 °C) on the formation of multilayer graphene shells...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Kim, Chang-Duk, Nguyen, Truong Tam Nguyen, Phạm, Hầu Thanh Việt, Jo, Younjung, Lee, Hyeong-Rag, Park, Chinho
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Elsevier Science 2023
Những chủ đề:
Truy cập trực tuyến:http://scholar.dlu.edu.vn/handle/123456789/2196
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-2196
record_format dspace
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
topic Nickel oxide nanoparticle, Core–shell structure, Graphene, Graphite, Thermal reduction
spellingShingle Nickel oxide nanoparticle, Core–shell structure, Graphene, Graphite, Thermal reduction
Kim, Chang-Duk
Nguyen, Truong Tam Nguyen
Phạm, Hầu Thanh Việt
Jo, Younjung
Lee, Hyeong-Rag
Park, Chinho
Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells
description Ni–graphite core–shell nanoparticles (CSNPs), which consisted of Ni nanoparticles (NPs) wrapped with several graphene layers, were grown by the thermal reduction of NiO NPs using H2. The effect of the synthesis temperature (800, 900, 1000, and 1100 °C) on the formation of multilayer graphene shells on the Ni core NPs was investigated to evaluate the structural and electrical characteristics of the particles. The proposed chemical reactions for the formation of Ni NPs can be summarized as follows: formation of liquid Ni by the reduction of NiO, thermal decomposition of the NiO phase, and formation of multilayer graphene shell because of the supersaturation of C in the liquid Ni phase. The resistivity of the electrode pattern fabricated with the Ni–graphite CSNP paste was found to be 6.75 × 10−3 Ω•cm. Further, the power conversion efficiency of bulk heterojunction solar cells fabricated with the Ni–graphite CSNPs is higher than that of cells fabricated without the Ni−graphite CSNPs. Thus, our Ni–graphite CSNPs can be employed as a highly efficient electrode material in bulk heterojunction solar cells.
format Journal article
author Kim, Chang-Duk
Nguyen, Truong Tam Nguyen
Phạm, Hầu Thanh Việt
Jo, Younjung
Lee, Hyeong-Rag
Park, Chinho
author_facet Kim, Chang-Duk
Nguyen, Truong Tam Nguyen
Phạm, Hầu Thanh Việt
Jo, Younjung
Lee, Hyeong-Rag
Park, Chinho
author_sort Kim, Chang-Duk
title Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells
title_short Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells
title_full Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells
title_fullStr Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells
title_full_unstemmed Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells
title_sort conductive electrodes based on ni–graphite core–shell nanoparticles for heterojunction solar cells
publisher Elsevier Science
publishDate 2023
url http://scholar.dlu.edu.vn/handle/123456789/2196
_version_ 1768306379249942528
spelling oai:scholar.dlu.edu.vn:123456789-21962023-05-09T13:09:59Z Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells Kim, Chang-Duk Nguyen, Truong Tam Nguyen Phạm, Hầu Thanh Việt Jo, Younjung Lee, Hyeong-Rag Park, Chinho Nickel oxide nanoparticle, Core–shell structure, Graphene, Graphite, Thermal reduction Ni–graphite core–shell nanoparticles (CSNPs), which consisted of Ni nanoparticles (NPs) wrapped with several graphene layers, were grown by the thermal reduction of NiO NPs using H2. The effect of the synthesis temperature (800, 900, 1000, and 1100 °C) on the formation of multilayer graphene shells on the Ni core NPs was investigated to evaluate the structural and electrical characteristics of the particles. The proposed chemical reactions for the formation of Ni NPs can be summarized as follows: formation of liquid Ni by the reduction of NiO, thermal decomposition of the NiO phase, and formation of multilayer graphene shell because of the supersaturation of C in the liquid Ni phase. The resistivity of the electrode pattern fabricated with the Ni–graphite CSNP paste was found to be 6.75 × 10−3 Ω•cm. Further, the power conversion efficiency of bulk heterojunction solar cells fabricated with the Ni–graphite CSNPs is higher than that of cells fabricated without the Ni−graphite CSNPs. Thus, our Ni–graphite CSNPs can be employed as a highly efficient electrode material in bulk heterojunction solar cells. 2023-05-09T13:09:54Z 2023-05-09T13:09:54Z 2018-11-10 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2196 10.1016/j.matchemphys.2018.11.019 en Materials Chemistry and Physics 0254-0584 [1] S. Mao, H. Pu, J. Chen, Graphene oxide and its reduction: modeling and experimental progress, RSC Adv. 2 (2012) 2643-2662. [2] D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications, Chem. Rev. 112 (2012) 6027-6053. [3] M. Kumar, Y.J. Ando, Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production, J. Nanosci. Nanotechnol. 10 (2010) 3739-3758. [4] S.Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286. [5] S.Y. Lee, C. Kim, H.T Kim, Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH3 plasma, J. Appl. Phys. 118 (2015) 103303-4. [6] J. Costa, A. Flacker, M. Nakashima, F. Fruett, M. Zampieri, E. Longo, Integration of microfabricated capacitive bridge and thermistor on the alumina substrates, ECS Trans. 49 (2012) 451–458. [7] I. Ahmad, B. Yazdani, Y. Zhu, Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites, Nanomater 5 (2015) 90-114. [8] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A. C. Ferrari, Production and processing of graphene and 2d crystals, materialstoday 15 (2012) 564-589. [9] K. Chu, W.S. Li, C.C. Jia, F.L. Tang, Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets, Appl. Phys. Lett. 101 (2012) 211903-4. [10] Y. Fan, W. Jiang, A. Kawasaki, Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type, Adv. Funct. Mater. 22 (2012) 3882-3889. [11] J. He, Y. Chen, W. Lv, K. Wen, Z. Wang, W. Zhang, Y. Li, W. Qin, W. He, Threedimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li−Te batteries, ACS Nano 10 (2016) 8837−8842. [12] J. He, Q. Li, Y. Chen, C. Xu, K. Zhou, X. Wang, W. Zhang, Y. Li, Self-assembled cauliflower-like FeS2 anchored into graphene foam as free-standing anode for highperformance lithium-ion batteries, Carbon 114 (2017) 111-116. [13] F. Giustino, H. J. Snaith, Toward lead-free perovskite solar cells, ACS Energy Lett. 1 (2016) 1233-1240. [14] B. Yazdani, Y. Xia, I. Ahmad, Y. Zhu, J. Eur, Graphene and carbon nanotube (GNT)- reinforced alumina nanocomposites, Ceram. Soc. 35 (2015) 179-186. [15] L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites, ACS Nano. 5 (2011) 3182-3190. [16] C. Kim, H.T. Kim, Direct formation of graphene shells on Al2O3 nano-particles using simple thermal treatment under C2H2-H2 atmospheric conditions, Materials Chemistry and Physics 202 (2017) 215-219. [17] K.V. Manukyan, A.G. Avetisyan, C.E. Shuck, H.A. Chatilyan, S. Rouvimov, S.L. Kharatyan, A.S. Mukasyan, Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations, J. Phys. Chem. C 119 (2015) 16131−16138. [18] H. T. Kim, C. Kim, and C. Park, Reduction and nitridation of graphene oxide (GO) films at room temperature using inductively coupled NH3 plasma, Vacuum 108 (2014) 35–38. [19] X. Zhao, Y. Ando, Raman spectra and X-ray diffraction patterns of carbon nanotubes prepared by hydrogen arc discharge, Jpn. J. Appl. Phys. 37 (1998) 4846–4849. [20] Naoki Morimoto, Takuya Kubo, and Yuta Nishina, Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications, Sci. Rep. 6 (2016) 21715-8. [21] C.D. Kim, H.R. Lee, H.T. Kim, Effect of NH3 gas ratio on the formation of nitrogendoped carbon nanotubes using thermal chemical vapor deposition, Mat. Chem. Phys. 183 (2016) 315-319. [22] T.C. Cheng, Effect of nitrogen and hydrogen on the growth of multiwall carbon nanotubes on flexible carbon cloth using thermal chemical vapor deposition, Mat. Chem. Phys. 136 (2012) 140-145. [23] S.C. Chang, T.S. Li, T.C. Lin, Significant morphology dependence on nitrogen proportion in growing carbon nanotubes, Mat. Lett. 62 (2008) 1893-1895. [24] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett. 9 (2009) 30-35. [25] X. Dong, P. Wang, W. Fang, C.Y. Su, Y.H. Chen, L.J. Li, , W. Huang, P. Chen, Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure, Carbon 49 (2011) 3672-3678. [26] K. Rakesh, R.M. Bodh, B. Mehar, S. Ravi, M. Silika, S. Saji, J. Pratha, Graphene as a transparent conducting and surface field layer in planar Si solar cells, Nanoscale Res. Lett. 3 (2014) 1-9. [27] V.T. Nguyen, H.D. Le, V.C. Nguyen, T.T.T. Ngo, D.Q. Le, X.N. Nguyen, N.M. Phan, Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method, Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 (2013) 035012-5. [28] Z. Ju, S. Zhang, Z. Xing, Q. Zhuang, Y. Qiang, Y. Qian, Direct synthesis of fewlayer Fdoped graphene foam and its lithium/potassium storage properties, ACS Appl. Mat. Interfaces 8 (2016) 20682-20690. [29] G. Hansen , E. Næss, K. Kristjansson, Sintered nickel powder wicks for flat vertical heat pipes, Energies 8 (2015) 2337-2357. [30] X. Li, H. Zhang, J. Huang, J. Lu, Z. Feng, Fast sintering GDC coated Ni powders synthesized by modified heterogeneous precipitation method, J. Alloy. Compd. 693 (2017) 882-886. [31] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc., Chanhassen, 1995. [32] S. K. Sharma, F. J. Vastola, P. L. Walker, Jr., Carbon 1997, 35 (4), 535. [33] R. Alizadeh, E. Jamshidi, H. Ale-Ebrahim, Kinetic study of nickel oxide reduction by methane, Chem. Eng. Technol. 30 (2007) 1123–1128. [34] N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics, Nanotechnology 19 (2008) 445201-6. [35] M.H. Tsai, W.S. Hwang, H.H. Chou, P.H. Hsieh, Effects of pulse voltage on inkjet printing of a silver nanopowder suspension, Nanotechnology 19 (2008) 335304-9. [36] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191. [37] M. Ma, Z. Zhu, B. Wu, S. Chen, Y. Shi, X. Wang, Preparation of highly conductive composites with segregated structure based on polyamide-6 and reduced graphene oxide, Mater. Lett. 190 (2017) 71–74. [38] G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4 (2005) 864–868. [39] K.M. O'Malley, C.Z. Li, H.L. Yip, A.K.Y. Jen, Enhanced Open℃Circuit Voltage in High Performance Polymer/Fullerene Bulk℃Heterojunction Solar Cells by Cathode Modification with a C60 Surfactant, Adv. Energy Mater. 2 (2012) 82–86. [40] A. Chunder, J. Liu, L. Zhai, Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites, Macromol. Rapid Commun. 31(2010) 380–384. [41] L. Bu, E. Pentzer, F.A. Bokel, T. Emrick, R.C. Hayward, Growth of {polythiophene/perylene} tetracarboxydiimide {donor/acceptor} Shish-Kebab nanostructures by coupled crystal modification, ACS Nano 6 (2012) 10924–10929. [42] P. Robaeys, F. Bonaccorso, E. Bourgeois, J. D’Haen, W. Dierckx, W. Dexters, D. Spoltore, J. Drijkoningen, J. Liesenborgs, A. Lombardo, A.C. Ferrari, F.V. Reeth, K. Haenen, J.V. Manca, M. Nesladek, Enhanced performance of polymer:fullerene bulk heterojunction solar cells upon graphene addition, Appl. Phys. Lett. 105 (2014) 083306-5. Elsevier Science