Controlling of Conductivity and Morphological Properties of Hole-Transport Layer Using Ionic Liquid for Vacuum-Free Planar Hybrid Solar Cells
In this study, an acidic (A) and pH-neutral (pHN) solution using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole-transport layer (HTL) was modified using a 1-butyl-3-methylimidazolium chloride (BMIM+Cl−) ionic liquid (IL). The effects of this ionic liquid on the condu...
Đã lưu trong:
Những tác giả chính: | , , , , , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
MDPI
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | http://scholar.dlu.edu.vn/handle/123456789/2198 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2198 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
vacuum free; conductivity; hybrid; surface roughness; ionic liquid |
spellingShingle |
vacuum free; conductivity; hybrid; surface roughness; ionic liquid Phạm, Hầu Thanh Việt Trinh, Thanh Kieu Hamid, M. Shaikh Saeed, M. Al-Zahrani Abdullah, Alhamidi Sami, Bin Dahman Mohaseen, S. Tamboli Truong, Nguyen Tam Nguyen Controlling of Conductivity and Morphological Properties of Hole-Transport Layer Using Ionic Liquid for Vacuum-Free Planar Hybrid Solar Cells |
description |
In this study, an acidic (A) and pH-neutral (pHN) solution using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole-transport layer (HTL) was modified using a 1-butyl-3-methylimidazolium chloride (BMIM+Cl−) ionic liquid (IL). The effects of this ionic liquid on the conductivity and morphological properties of the PEDOT:PSS films were investigated. The conductivity and morphological properties of the PEDOT: PSS films before and after adding IL were measured using a UV–vis spectrophotometer and atomic force microscope (AFM), respectively. The conductivity of the A-PEDOT:PSSfilm-based ionic liquid was decreased, while the conductivity of the pHN-PEDOT:PSS-film-based ionicliquid was increased. The surface morphology of the A-PEDOT:PSS-film-based ionic liquid was slightly decreased, while the conductivity of the pHN-PEDOT:PSS-film-based ionic liquid was slightly increased. The vacuum-free planar hybrid solar cells (VFPHSCs) using the pHN-PEDOT:PSS-film-based ionic liquid show a higher power conversion efficiency (PCE) than the VFPHSCs using the A-PEDOT:PSS-film-based ionic liquid. We also report that a solar cell with a structure of ITO/pHN-PEDOT:PSS/PTB7:PCBM/PEO/EgaIn has a maximum PCE of about ~5%. |
format |
Journal article |
author |
Phạm, Hầu Thanh Việt Trinh, Thanh Kieu Hamid, M. Shaikh Saeed, M. Al-Zahrani Abdullah, Alhamidi Sami, Bin Dahman Mohaseen, S. Tamboli Truong, Nguyen Tam Nguyen |
author_facet |
Phạm, Hầu Thanh Việt Trinh, Thanh Kieu Hamid, M. Shaikh Saeed, M. Al-Zahrani Abdullah, Alhamidi Sami, Bin Dahman Mohaseen, S. Tamboli Truong, Nguyen Tam Nguyen |
author_sort |
Phạm, Hầu Thanh Việt |
title |
Controlling of Conductivity and Morphological Properties of Hole-Transport Layer Using Ionic Liquid for Vacuum-Free Planar Hybrid Solar Cells |
title_short |
Controlling of Conductivity and Morphological Properties of Hole-Transport Layer Using Ionic Liquid for Vacuum-Free Planar Hybrid Solar Cells |
title_full |
Controlling of Conductivity and Morphological Properties of Hole-Transport Layer Using Ionic Liquid for Vacuum-Free Planar Hybrid Solar Cells |
title_fullStr |
Controlling of Conductivity and Morphological Properties of Hole-Transport Layer Using Ionic Liquid for Vacuum-Free Planar Hybrid Solar Cells |
title_full_unstemmed |
Controlling of Conductivity and Morphological Properties of Hole-Transport Layer Using Ionic Liquid for Vacuum-Free Planar Hybrid Solar Cells |
title_sort |
controlling of conductivity and morphological properties of hole-transport layer using ionic liquid for vacuum-free planar hybrid solar cells |
publisher |
MDPI |
publishDate |
2023 |
url |
http://scholar.dlu.edu.vn/handle/123456789/2198 |
_version_ |
1768306379954585600 |
spelling |
oai:scholar.dlu.edu.vn:123456789-21982023-05-10T07:16:04Z Controlling of Conductivity and Morphological Properties of Hole-Transport Layer Using Ionic Liquid for Vacuum-Free Planar Hybrid Solar Cells Phạm, Hầu Thanh Việt Trinh, Thanh Kieu Hamid, M. Shaikh Saeed, M. Al-Zahrani Abdullah, Alhamidi Sami, Bin Dahman Mohaseen, S. Tamboli Truong, Nguyen Tam Nguyen vacuum free; conductivity; hybrid; surface roughness; ionic liquid In this study, an acidic (A) and pH-neutral (pHN) solution using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole-transport layer (HTL) was modified using a 1-butyl-3-methylimidazolium chloride (BMIM+Cl−) ionic liquid (IL). The effects of this ionic liquid on the conductivity and morphological properties of the PEDOT:PSS films were investigated. The conductivity and morphological properties of the PEDOT: PSS films before and after adding IL were measured using a UV–vis spectrophotometer and atomic force microscope (AFM), respectively. The conductivity of the A-PEDOT:PSSfilm-based ionic liquid was decreased, while the conductivity of the pHN-PEDOT:PSS-film-based ionicliquid was increased. The surface morphology of the A-PEDOT:PSS-film-based ionic liquid was slightly decreased, while the conductivity of the pHN-PEDOT:PSS-film-based ionic liquid was slightly increased. The vacuum-free planar hybrid solar cells (VFPHSCs) using the pHN-PEDOT:PSS-film-based ionic liquid show a higher power conversion efficiency (PCE) than the VFPHSCs using the A-PEDOT:PSS-film-based ionic liquid. We also report that a solar cell with a structure of ITO/pHN-PEDOT:PSS/PTB7:PCBM/PEO/EgaIn has a maximum PCE of about ~5%. 16 467 2023-05-09T13:37:30Z 2023-05-09T13:37:30Z 2023-02-01 Journal article Bài báo đăng trên tạp chí quốc tế (có ISSN), bao gồm book chapter http://scholar.dlu.edu.vn/handle/123456789/2198 10.3390/en16010467 en Energies 1996-1073 1. Fu, H.; Li, Y.; Yu, J.; Wu, Z.; Fan, Q.; Lin, F.; Woo, H.Y.; Gao, F.; Zhu, Z.; Jen, A.K.Y. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J. Am. Chem. Soc. 2021, 143, 2665–2670. [CrossRef] [PubMed] 2. Park, M.; Jung, J.W. Easily Accessible Low Band Gap Polymer for Efficient Nonfullerene Polymer Solar Cells with a Low Eloss of 0.55 eV. ACS Appl. Mater. Interfaces 2019, 11, 5435–5440. [CrossRef] [PubMed] 3. Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013, 38, 1929–1940. [CrossRef] [PubMed] 4. Liu, C.; Yi, C.; Wang, K.; Yang, Y.; Bhatta, R.S.; Tsige, M.; Xiao, S.; Gong, X. Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor–acceptor conjugated copolymer. ACS Appl. Mater. Interfaces 2015, 7, 4928–4935. [CrossRef] 5. Hou, J.; Inganas, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128. [CrossRef] 6. Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics. 2018, 12, 131–142. [CrossRef] 7. Weng, K.; Ye, L.; Zhu, L.; Xu, J.; Zhou, J.; Feng, X.; Lu, G.; Tan, S.; Liu, F.; Sun, Y. Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855. [CrossRef] 8. Ayzner, A.L.; Wanger, D.D.; Tassone, C.J.; Tolbert, S.H.; Schwartz, B.J. Room to Improve Conjugated Polymer-Based Solar Cells: Understanding How Thermal Annealing Affects the Fullerene Component of a Bulk Heterojunction Photovoltaic Device. J. Phys. Chem. C 2008, 112, 18711–18716. [CrossRef] 9. Verploegen, E.; Mondal, R.; Bettinger, C.J.; Sok, S.; Toney, M.F.; Bao, Z. Effects of thermal annealing upon the morphology of polymer–fullerene blends. Adv. Funct. Mater. 2010, 20, 3519–3529. [CrossRef] 10. Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. “Solvent annealing” effect in polymer solar cells based on poly (3-hexylthiophene) and methanol fullerenes. Adv. Funct. Mater. 2007, 17, 1636–1644. [CrossRef] 11. Kumar, C.V.; Cabau, L.; Viterisi, A.; Biswas, S.; Sharma, G.D.; Palomares, E. Solvent annealing control of bulk heterojunction organic solar cells with 6.6% efficiency based on a benzodithiophene donor core and dicyano acceptor units. J. Phys. Chem. C 2015, 119, 20871–20879. [CrossRef] 12. Liao, H.C.; Ho, C.C.; Chang, C.Y.; Jao, M.H.; Darling, S.B.; Su, W.F. Additives for morphology control in high-efficiency organic solar cells. Mater. Today 2013, 16, 326–336. [CrossRef] 13. Schmidt, K.; Tassone, C.J.; Niskala, J.R.; Yiu, A.T.; Lee, O.P.; Weiss, T.M.; Wang, C.; Frechet, J.M.J.; Beaujuge, P.M.; Toney, M.F. A Mechanistic Understanding of Processing Additive-Induced Efficiency Enhancement in Bulk Heterojunction Organic Solar Cells. Adv. Mater. 2014, 26, 300–305. [CrossRef] [PubMed] 14. Lattante, S. Electron and hole transport layers: Their use in inverted bulk heterojunction polymer solar cells. Electronics 2014, 3, 132–164. [CrossRef] 15. Chen, L.M.; Xu, Z.; Hong, Z.; Yang, Y. Interface investigation and engineering—Achieving high performance polymer photovoltaic devices. J. Mater. Chem. 2010, 20, 2575–2598. [CrossRef] 16. Park, J.H.; Lee, T.W.; Chin, B.D.; Wang, D.H.; Park, O.O. Roles of interlayers in efficient organic photovoltaic devices. Macromol. Rapid Commun. 2010, 31, 2095–2108. [CrossRef] 17. Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F.H.; Ouyang, J. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron. 2015, 26, 4438–4462. [CrossRef] 18. Park, H.; Kong, J. An Alternative Hole Transport Layer for Both ITO-and Graphene-Based Organic Solar Cells. Adv. Energy Mater. 2014, 4, 1301280. [CrossRef] 19. Kim, J.Y.; Jung, J.H.; Lee, D.E.; Joo, J. Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126, 311–316. [CrossRef] 20. Ouyang, J.; Xu, Q.; Chu, C.W.; Yang, Y.; Li, G.; Shinar, J. On the mechanism of conductivity enhancement in poly (3, 4- ethylenedioxythiophene): Poly (styrene sulfonate) film through solvent treatment. Polymer 2004, 45, 8443–8450. [CrossRef] 21. Jonsson, S.K.M.; Birgerson, J.; Crispin, X.; Greczynski, G.; Osikowicz, W.; Denier van der Gon, A.W.; Salaneck, W.R.; Fahlman, M. The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synth. Met. 2003, 139, 1–10. [CrossRef] 22. Xia, Y.; Zhang, H.; Ouyang, J. Highly conductive PEDOT: PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. J. Mater. Chem. 2010, 20, 9740–9747. [CrossRef] 23. Kadem, B.; Cranton, W.; Hassan, A. Metal salt modified PEDOT: PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Org. Electron. 2015, 24, 73–79. [CrossRef] 24. Badre, C.; Marquant, L.; Alsayed, A.M.; Hough, L.A. Highly conductive poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv. Funct. Mater. 2012, 22, 2723–2727. [CrossRef] 25. Pham, V.T.H.; Trinh, T.K.; Truong, N.T.N.; Park, C. Liquid eutectic GaIn as an alternative electrode for PTB7: PCBM organic solar cells. Jpn. J. Appl. Phys. 2017, 56, 046501. [CrossRef] 26. Cuilian, Y.; Lixia, H.; Hang, S.; Kaihua, G. Determination of pH value and acid-base Property of Ionic Liquid Aqueous Solutions. Acta Chim. Sin. 2014, 72, 495–501. 27. Zhanying, Z.; Hara, I.M.O.; William, O.S.D. Effects of pH on pretreatment of sugarcane bagasse using aqueous imidazolium ionic liquids. Green Chem. 2013, 15, 431–438. [CrossRef] 28. Dobbelin, M.; Marcilla, R.; Salsamendi, M.; Gonzalo, C.P.; Carrasco, P.M.; Pomposo, J.A.; Mecerreyes, D. Influence of ionic liquids on the electrical conductivity and morphology of PEDOT: PSS films. Chem. Mater. 2007, 19, 2147–2149. MDPI |