A characterization of the algebraic degree in semidefinite programming

In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...

Fuld beskrivelse

Đã lưu trong:
Bibliografiske detaljer
Những tác giả chính: Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van
Format: Journal article
Sprog:English
Udgivet: Springer 2023
Online adgang:https://scholar.dlu.edu.vn/handle/123456789/2318
https://doi.org/10.1007/s13348-022-00358-5
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Beskrivelse
Summary:In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way.