A characterization of the algebraic degree in semidefinite programming

In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Springer 2023
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/2318
https://doi.org/10.1007/s13348-022-00358-5
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
id oai:scholar.dlu.edu.vn:123456789-2318
record_format dspace
spelling oai:scholar.dlu.edu.vn:123456789-23182023-06-14T02:27:06Z A characterization of the algebraic degree in semidefinite programming Đặng, Tuấn Hiệp Nguyen Thi Ngoc Giao Nguyen Thi Mai Van In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way. 74 2 443-455 2023-05-19T05:48:45Z 2023-05-19T05:48:45Z 2023-05 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 en Collectanea Mathematica 2038-4815 Springer
institution Thư viện Trường Đại học Đà Lạt
collection Thư viện số
language English
description In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way.
format Journal article
author Đặng, Tuấn Hiệp
Nguyen Thi Ngoc Giao
Nguyen Thi Mai Van
spellingShingle Đặng, Tuấn Hiệp
Nguyen Thi Ngoc Giao
Nguyen Thi Mai Van
A characterization of the algebraic degree in semidefinite programming
author_facet Đặng, Tuấn Hiệp
Nguyen Thi Ngoc Giao
Nguyen Thi Mai Van
author_sort Đặng, Tuấn Hiệp
title A characterization of the algebraic degree in semidefinite programming
title_short A characterization of the algebraic degree in semidefinite programming
title_full A characterization of the algebraic degree in semidefinite programming
title_fullStr A characterization of the algebraic degree in semidefinite programming
title_full_unstemmed A characterization of the algebraic degree in semidefinite programming
title_sort characterization of the algebraic degree in semidefinite programming
publisher Springer
publishDate 2023
url https://scholar.dlu.edu.vn/handle/123456789/2318
https://doi.org/10.1007/s13348-022-00358-5
_version_ 1778233848759320576