A characterization of the algebraic degree in semidefinite programming
In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...
Đã lưu trong:
Những tác giả chính: | , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Springer
2023
|
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2318 |
---|---|
record_format |
dspace |
spelling |
oai:scholar.dlu.edu.vn:123456789-23182023-06-14T02:27:06Z A characterization of the algebraic degree in semidefinite programming Đặng, Tuấn Hiệp Nguyen Thi Ngoc Giao Nguyen Thi Mai Van In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way. 74 2 443-455 2023-05-19T05:48:45Z 2023-05-19T05:48:45Z 2023-05 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 en Collectanea Mathematica 2038-4815 Springer |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
description |
In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way. |
format |
Journal article |
author |
Đặng, Tuấn Hiệp Nguyen Thi Ngoc Giao Nguyen Thi Mai Van |
spellingShingle |
Đặng, Tuấn Hiệp Nguyen Thi Ngoc Giao Nguyen Thi Mai Van A characterization of the algebraic degree in semidefinite programming |
author_facet |
Đặng, Tuấn Hiệp Nguyen Thi Ngoc Giao Nguyen Thi Mai Van |
author_sort |
Đặng, Tuấn Hiệp |
title |
A characterization of the algebraic degree in semidefinite programming |
title_short |
A characterization of the algebraic degree in semidefinite programming |
title_full |
A characterization of the algebraic degree in semidefinite programming |
title_fullStr |
A characterization of the algebraic degree in semidefinite programming |
title_full_unstemmed |
A characterization of the algebraic degree in semidefinite programming |
title_sort |
characterization of the algebraic degree in semidefinite programming |
publisher |
Springer |
publishDate |
2023 |
url |
https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 |
_version_ |
1778233848759320576 |