A characterization of the algebraic degree in semidefinite programming

In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van
Formato: Journal article
Lenguaje:English
Publicado: Springer 2023
Acceso en línea:https://scholar.dlu.edu.vn/handle/123456789/2318
https://doi.org/10.1007/s13348-022-00358-5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Descripción
Sumario:In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way.