A characterization of the algebraic degree in semidefinite programming

In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...

Cur síos iomlán

Đã lưu trong:
Sonraí Bibleagrafaíochta
Những tác giả chính: Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van
Formáid: Journal article
Teanga:English
Foilsithe: Springer 2023
Rochtain Ar Líne:https://scholar.dlu.edu.vn/handle/123456789/2318
https://doi.org/10.1007/s13348-022-00358-5
Clibeanna: Cuir Clib Leis
Gan Chlibeanna, Bí ar an gcéad duine leis an taifead seo a chlibeáil!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Cur Síos
Achoimre:In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way.