A characterization of the algebraic degree in semidefinite programming

In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
Những tác giả chính: Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van
פורמט: Journal article
שפה:English
יצא לאור: Springer 2023
גישה מקוונת:https://scholar.dlu.edu.vn/handle/123456789/2318
https://doi.org/10.1007/s13348-022-00358-5
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
תיאור
סיכום:In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way.