A characterization of the algebraic degree in semidefinite programming

In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van
Формат: Journal article
Язык:English
Опубликовано: Springer 2023
Online-ссылка:https://scholar.dlu.edu.vn/handle/123456789/2318
https://doi.org/10.1007/s13348-022-00358-5
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Описание
Итог:In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way.