A characterization of the algebraic degree in semidefinite programming
In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...
Uloženo v:
Hlavní autoři: | Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer
2023
|
On-line přístup: | https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Podobné jednotky
-
A formula for the algebraic degree in semidefinite programming
Autor: Đặng, Tuấn Hiệp
Vydáno: (2023) -
A characterization for the degree of Fano varieties
Autor: Đặng, Tuấn Hiệp, a další
Vydáno: (2023) -
Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
Autor: Liguo Jiao, a další
Vydáno: (2024) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
Autor: Vaithilingam, Jeyakumar, a další
Vydáno: (2023) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
Autor: Vaithilingam, Jeyakumar, a další
Vydáno: (2023)