A characterization of the algebraic degree in semidefinite programming
In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...
Spremljeno u:
Glavni autori: | Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van |
---|---|
Format: | Journal article |
Jezik: | English |
Izdano: |
Springer
2023
|
Online pristup: | https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 |
Oznake: |
Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Similar Items
-
A formula for the algebraic degree in semidefinite programming
od: Đặng, Tuấn Hiệp
Izdano: (2023) -
A characterization for the degree of Fano varieties
od: Đặng, Tuấn Hiệp, i dr.
Izdano: (2023) -
Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
od: Liguo Jiao, i dr.
Izdano: (2024) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
od: Vaithilingam, Jeyakumar, i dr.
Izdano: (2023) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
od: Vaithilingam, Jeyakumar, i dr.
Izdano: (2023)