A characterization of the algebraic degree in semidefinite programming
In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...
Salvato in:
Autori principali: | Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
Springer
2023
|
Accesso online: | https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 |
Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Documenti analoghi
-
A formula for the algebraic degree in semidefinite programming
di: Đặng, Tuấn Hiệp
Pubblicazione: (2023) -
A characterization for the degree of Fano varieties
di: Đặng, Tuấn Hiệp, et al.
Pubblicazione: (2023) -
Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
di: Liguo Jiao, et al.
Pubblicazione: (2024) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
di: Vaithilingam, Jeyakumar, et al.
Pubblicazione: (2023) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
di: Vaithilingam, Jeyakumar, et al.
Pubblicazione: (2023)