A characterization of the algebraic degree in semidefinite programming
In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...
保存先:
主要な著者: | Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer
2023
|
オンライン・アクセス: | https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
類似資料
-
A formula for the algebraic degree in semidefinite programming
著者:: Đặng, Tuấn Hiệp
出版事項: (2023) -
A characterization for the degree of Fano varieties
著者:: Đặng, Tuấn Hiệp, 等
出版事項: (2023) -
Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
著者:: Liguo Jiao, 等
出版事項: (2024) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
著者:: Vaithilingam, Jeyakumar, 等
出版事項: (2023) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
著者:: Vaithilingam, Jeyakumar, 等
出版事項: (2023)