A characterization of the algebraic degree in semidefinite programming
In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...
Сохранить в:
Главные авторы: | Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer
2023
|
Online-ссылка: | https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Схожие документы
-
A formula for the algebraic degree in semidefinite programming
по: Đặng, Tuấn Hiệp
Опубликовано: (2023) -
A characterization for the degree of Fano varieties
по: Đặng, Tuấn Hiệp, et al.
Опубликовано: (2023) -
Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
по: Liguo Jiao, et al.
Опубликовано: (2024) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
по: Vaithilingam, Jeyakumar, et al.
Опубликовано: (2023) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
по: Vaithilingam, Jeyakumar, et al.
Опубликовано: (2023)