A characterization of the algebraic degree in semidefinite programming
In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many intere...
Sparad:
Huvudupphovsmän: | Đặng, Tuấn Hiệp, Nguyen Thi Ngoc Giao, Nguyen Thi Mai Van |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
Springer
2023
|
Länkar: | https://scholar.dlu.edu.vn/handle/123456789/2318 https://doi.org/10.1007/s13348-022-00358-5 |
Taggar: |
Lägg till en tagg
Inga taggar, Lägg till första taggen!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
Liknande verk
-
A formula for the algebraic degree in semidefinite programming
av: Đặng, Tuấn Hiệp
Publicerad: (2023) -
A characterization for the degree of Fano varieties
av: Đặng, Tuấn Hiệp, et al.
Publicerad: (2023) -
Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
av: Liguo Jiao, et al.
Publicerad: (2024) -
Convergence of the Lasserre hierarchy of semidefinite programming relaxations for convex polynomial programs without compactness
av: Vaithilingam, Jeyakumar, et al.
Publicerad: (2023) -
Convergent semidefinite programming relaxations for global bilevel polynomial optimization problems
av: Vaithilingam, Jeyakumar, et al.
Publicerad: (2023)