An identity involving symmetric polynomials and the geometry of Lagrangian Grassmannians

We first prove an identity involving symmetric polynomials. This identity leads us into exploring the geometry of Lagrangian Grassmannians. As an insight applications, we obtain a formula for the integral over the Lagrangian Grassmannian of a characteristic class of the tautological sub-bundle. More...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Đặng, Tuấn Hiệp, Nguyen Chanh Tu
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Elsevier 2023
Truy cập trực tuyến:https://scholar.dlu.edu.vn/handle/123456789/2322
https://doi.org/10.1016/j.jalgebra.2020.07.025
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
Miêu tả
Tóm tắt:We first prove an identity involving symmetric polynomials. This identity leads us into exploring the geometry of Lagrangian Grassmannians. As an insight applications, we obtain a formula for the integral over the Lagrangian Grassmannian of a characteristic class of the tautological sub-bundle. Moreover, a relation to that over the ordinary Grassmannian and its application to the degree formula for the Lagrangian Grassmannian are given. Finally, we present further applications to the computation of Schubert structure constants and three-point, degree 1, genus 0 Gromov–Witten invariants of the Lagrangian Grassmannian. Some examples together with explicit computations are presented.