Estimation and Feature Selection in High-Dimensional Mixtures-of-Experts Models
The statistical analysis of heterogeneous and high-dimensional data is being a challenging problem, both from modeling, and inference point of views, especially with the today’s big data phenomenon. This suggests new strategies, particularly in advanced analyses going from density estimation to pred...
保存先:
第一著者: | Huỳnh, Bảo Tuyên |
---|---|
フォーマット: | Doctoral thesis |
言語: | English |
出版事項: |
Caen, France
2023
|
主題: | |
オンライン・アクセス: | https://scholar.dlu.edu.vn/handle/123456789/2336 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
類似資料
-
Estimation and feature selection in high-dimensional mixtures-of-experts models
著者:: Huỳnh, Bảo Tuyên
出版事項: (2023) -
Regularized Mixtures of Experts in High-Dimensional Data
著者:: Faicel, Chamroukhi, 等
出版事項: (2023) -
Regularised maximum-likelihood inference of mixture of experts for regression and clustering
著者:: Huỳnh, Bảo Tuyên, 等
出版事項: (2023) -
MSET performance optimization through regularization /
著者:: Hines, J. Wesley. -
Wallace's approach to unsupervised learning : the snob program /
著者:: Jorgensen, Murray A.