A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid
This article presents a composite (COM) method to obtain the high-resolution pulse shape discrimination (PSD) for the neutron and gamma-ray pulses generated from scintillation detectors. The method, which is based on a selective combination of the digital charge integration (DCI) with the reference...
Đã lưu trong:
Những tác giả chính: | , , , , , , |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
IEEE
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/2448 |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2448 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
gamma-ray detection liquid scintillation detectors neural nets neutron detection pulse shaping solid scintillation detectors |
spellingShingle |
gamma-ray detection liquid scintillation detectors neural nets neutron detection pulse shaping solid scintillation detectors Phan, Văn Chuân Nguyễn, Xuân Hải Nguyễn, Ngọc Anh Phạm, Đình Khang Nguyễn, Quang Hưng Trương, Văn Minh Nguyễn, Duy Lý A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid |
description |
This article presents a composite (COM) method to obtain the high-resolution pulse shape discrimination (PSD) for the neutron and gamma-ray pulses generated from scintillation detectors. The method, which is based on a selective combination of the digital charge integration (DCI) with the reference pulse method, aims to reduce the mixed radiation events in the low-energy range. An EJ-301 liquid scintillation detector together with a fast sampling analog-to-digital converter (ADC) is used to measure and digitize the pulses induced from the radioactive decays of 60 Co and 252 Cf, which are then analyzed by our COM method. The proposed method is evaluated using the figure of merit (FoM) and separation quality function F(u), and the results are compared with three known methods, namely the DCI, standard event fit (SEF), and artificial neural network (ANN) methods. We show that the average values of FoM and F(u) obtained within the COM method are about ten times higher than those obtained within the DCI and SEF in the whole energy range from 50 to 1000 keV electron equivalent (keVee). In particular, by using the COM method, the percentage of gamma events being confused as neutrons ranges from 0.32% to 8.80% when the energy is reduced from 400 to 50 keVee. This finding, which is significantly lower than those obtained by using the DCI and SEF, indicates that the proposed COM method should be considered as a leading method for producing a neutron/gamma PSD counter system with high resolution. |
format |
Journal article |
author |
Phan, Văn Chuân Nguyễn, Xuân Hải Nguyễn, Ngọc Anh Phạm, Đình Khang Nguyễn, Quang Hưng Trương, Văn Minh Nguyễn, Duy Lý |
author_facet |
Phan, Văn Chuân Nguyễn, Xuân Hải Nguyễn, Ngọc Anh Phạm, Đình Khang Nguyễn, Quang Hưng Trương, Văn Minh Nguyễn, Duy Lý |
author_sort |
Phan, Văn Chuân |
title |
A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid |
title_short |
A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid |
title_full |
A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid |
title_fullStr |
A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid |
title_full_unstemmed |
A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid |
title_sort |
composite method for improving the pulse shape discrimination efficiency of a scintillation detector using ej-301 liquid |
publisher |
IEEE |
publishDate |
2023 |
url |
https://scholar.dlu.edu.vn/handle/123456789/2448 |
_version_ |
1778233861779488768 |
spelling |
oai:scholar.dlu.edu.vn:123456789-24482023-06-10T14:35:37Z A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid Phan, Văn Chuân Nguyễn, Xuân Hải Nguyễn, Ngọc Anh Phạm, Đình Khang Nguyễn, Quang Hưng Trương, Văn Minh Nguyễn, Duy Lý gamma-ray detection liquid scintillation detectors neural nets neutron detection pulse shaping solid scintillation detectors This article presents a composite (COM) method to obtain the high-resolution pulse shape discrimination (PSD) for the neutron and gamma-ray pulses generated from scintillation detectors. The method, which is based on a selective combination of the digital charge integration (DCI) with the reference pulse method, aims to reduce the mixed radiation events in the low-energy range. An EJ-301 liquid scintillation detector together with a fast sampling analog-to-digital converter (ADC) is used to measure and digitize the pulses induced from the radioactive decays of 60 Co and 252 Cf, which are then analyzed by our COM method. The proposed method is evaluated using the figure of merit (FoM) and separation quality function F(u), and the results are compared with three known methods, namely the DCI, standard event fit (SEF), and artificial neural network (ANN) methods. We show that the average values of FoM and F(u) obtained within the COM method are about ten times higher than those obtained within the DCI and SEF in the whole energy range from 50 to 1000 keV electron equivalent (keVee). In particular, by using the COM method, the percentage of gamma events being confused as neutrons ranges from 0.32% to 8.80% when the energy is reduced from 400 to 50 keVee. This finding, which is significantly lower than those obtained by using the DCI and SEF, indicates that the proposed COM method should be considered as a leading method for producing a neutron/gamma PSD counter system with high resolution. 70 2023-06-08T12:54:44Z 2023-06-08T12:54:44Z 2021-03-11 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/2448 10.1109/TIM.2021.3060600 en Investigation on neutron/gamma discrimination algorithms for neutron detector systems using EJ-301 liquid scintillator IEEE Transactions on Instrumentation and Measurement 1557-9662 6831/Nafosted [1] S. D. Jastaniah and P. J. Sellin, “Digital pulse-shape algorithms for scintillation-based neutron detectors,” IEEE Trans. Nucl. Sci., vol. 49, no. 4, pp. 1824–1828, Aug. 2002, doi: 10.1109/TNS.2002.801674. [2] R. F. Lang, D. Masson, J. Pienaar, and S. Röttger, “Improved pulse shape discrimination in EJ-301 liquid scintillators,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 856, pp. 26–31, Jun. 2017, doi: 10.1016/j.nima.2017.02.090. [3] Mitsubishi Rayon Carbon Fiber & Composites. (2014). NB301 Data Sheet. [Online]. Available: https://www.rockwestcomposites.com/media/ wysiwyg/MRCFC_NB301_Data.pdf [4] B. D’Mellow, M. D. Aspinall, R. O. Mackin, M. J. Joyce, and A. J. Peyton, “Digital discrimination of neutrons and γ -rays in liquid scintillators using pulse gradient analysis,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 578, no. 1, pp. 191–197, Jul. 2007, doi: 10.1016/j.nima.2007.04.174. [5] S. Marrone et al., “Pulse shape analysis of liquid scintillators for neutron studies,” Nucl. Instrum. Methods Phys. Res. A, Accel., Spectrometers, Detectors Associated Equip., vol. 490, nos. 1–2, pp. 299–307, Sep. 2002, doi: 10.1016/S0168-9002(02)01063-X. [6] R. Aryaeinejad, E. L. Reber, and D. F. Spencer, “Development of a handheld device for simultaneous onitoring of fast neutrons and gamma rays,” IEEE Trans. Nucl. Sci., vol. 49, no. 4, pp. 1909–1913, Aug. 2002, doi: 10.1109/TNS.2002.801508. [7] C. S. Sosa, M. Flaska, and S. A. Pozzi, “Comparison of analog and digital pulse-shape-discrimination systems,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 826, pp. 72–79, Aug. 2016, doi: 10.1016/j.nima.2016.03.088. [8] R. A. Winyard, J. E. Lutkin, and G. W. McBeth, “Pulse shape discrimination in inorganic and organic scintillators. I,” Nucl. Instrum. Methods, vol. 95, no. 1, pp. 141–153, 1971, doi: 10.1016/0029-554X(71)90054-1. [9] M. Flaska, M. Faisal, D. D. Wentzloff, and S. A. Pozzi, “Influence of sampling properties of fast-waveform digitizers on neutron-gamma ray, pulse-shape discrimination for organic scintillation detectors,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 729, pp. 456–462, Nov. 2013, doi: 10.1016/j.nima.2013. 07.008. [10] G. Liu, M. J. Joyce, X. Ma, and M. D. Aspinall, “A digital method for the discrimination of neutrons and γ rays with organic scintillation detectors using frequency gradient analysis,” IEEE Trans. Nucl. Sci., vol. 57, no. 3, pp. 1682–1691, Jun. 2010, doi: 10.1109/TNS.2010.2044246. [11] D. Takaku, T. Oishi, and M. Baba, “Development of neutron-gamma discrimination technique using pattern-recognition method with digital signal processing,” Prog. Nucl. Sci. Technol., vol. 1, pp. 210–213, Feb. 2011, doi: 10.15669/pnst.1.210. [12] H. Sakai, A. Uritani, Y. Takenaka, C. Mori, and T. Iguchi, “New pulse shape analysis method with multi-shaping amplifiers,” Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 421, nos. 1–2, pp. 316–321, 1999, doi: 10.1016/S0168-9002(98) 01259-5. [13] M. Nakhostin and P. M. Walker, “Application of digital zero-crossing technique for neutron–gamma discrimination in liquid organic scintillation detectors,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 621, nos. 1–3, pp. 498–501, Sep. 2010, doi: 10.1016/j.nima.2010.06.252. [14] M. Amiri, V. Pienosil, F. Cvachovec, Z. Matej, and F. Mravec, “Quick algorithms for real-time discrimination of neutrons and gamma rays,” J. Radioanalytical Nucl. Chem., vol. 303, no. 1, pp. 583–599, Jan. 2015, doi: 10.1007/s10967-014-3406-5. [15] C. Guerrero, D. Cano-Ott, M. Fernández-Ordóñez, E. González-Romero, T. Martínez, and D. Villamarín, “Analysis of the BC501A neutron detector signals using the true pulse shape,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 597, nos. 2–3, pp. 212–218, Dec. 2008, doi: 10.1016/j.nima.2008.09.017. [16] H. Singh and R. Mehra, “Discrete wavelet transform method for high flux n − γ discrimination with liquid scintillators,” IEEE Trans. Nucl. Sci., vol. 64, no. 7, pp. 1927–1933, Jul. 2017, doi: 10. 1109/TNS.2017.2708602. [17] R. M. French, M. Thevenin, M. Hamel, and E. Montbarbon, “A histogram-difference method for neutron/gamma discrimination using liquid and plastic scintillators,” IEEE Trans. Nucl. Sci., vol. 64, no. 8, pp. 2423–2432, Aug. 2017, doi: 10.1109/TNS.2017. 2720798. [18] C. Fu, A. D. Fulvio, S. D. Clarke, D. Wentzloff, S. A. Pozzi, and H. S. Kim, “Artificial neural network algorithms for pulse shape discrimination and recovery of piled-up pulses in organic scintilla tors,” Ann. Nucl. Energy, vol. 120, pp. 410–421, Oct. 2018, doi: 10. 1016/j.anucene.2018.05.054. [19] G. Liu, M. D. Aspinall, X. Ma, and M. J. Joyce, “An investigation of the digital discrimination of neutrons and γ rays with organic scintillation detectors using an artificial neural network,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 607, no. 3, pp. 620–628, Aug. 2009, doi: 10.1016/j.nima.2009.06.027. [20] E. Ronchi et al., “An artificial neural network based neutron–gamma discrimination and pile-up rejection framework for the BC-501 liquid scintillation detector,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 610, no. 2, pp. 534–539, Nov. 2009, doi: 10.1016/j.nima.2009.08.064. [21] B. Blair et al., “Gaussian mixture models as automated particle classifiers for fast neutron detectors,” Stat. Anal. Data Mining, ASA Data Sci. J., vol. 12, no. 6, pp. 479–488, Dec. 2019, doi: 10.1002/ sam.11432. [22] M. Gelfusa et al., “Advanced pulse shape discrimination via machine learning for applications in thermonuclear fusion,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 974, Sep. 2020, Art. no. 164198, doi: 10.1016/j.nima.2020.164198. [23] Y. Lotfi, S. A. Moussavi-Zarandi, N. Ghal-Eh, E. Pourjafarabadi, and E. Bayat, “Neutron–gamma discrimination based on quantum clustering technique,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 928, pp. 51–57, Jun. 2019, doi: 10.1016/ j.nima.2019.03.009. [24] B. Wan et al., “Digital pulse shape discrimination methods for n-γ separation in an EJ-301 liquid scintillation detector,” Chin. Phys. C, vol. 39, no. 11, pp. 1–6, 2015, doi: 10.1088/1674-1137/39/11/116201. [25] C. Payne et al., “Neutron/gamma pulse shape discrimination in EJ-299-34 at high flux,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC), Oct. 2015, pp. 1–5, doi: 10.1109/NSSMIC.2015.7581994. [26] V. C. Phan and X. H. Nguyen, “Evaluating four neutron-gamma discrim ination methods with EJ-301 scintillator,” Anal. Integr. Circuits Signal Process., vol. 98, no. 1, pp. 75–84, Jan. 2019, doi: 10.1007/s10470-018-1324-0. [27] P. V. Chuan, N. D. Hoa, N. X. Hai, N. N. Anh, N. N. Dien, and P. D. Khang, “A scintillation detector configuration for pulse shape analysis,” Nucl. Eng. Technol., vol. 50, no. 8, pp. 1426–1432, Dec. 2018, doi: 10.1016/j.net.2018.07.009. [28] Nuclear Electronics vol II-Proceedings of Belgrade Conference-15-20 May, 1961, IAEA, Vienna, Austria, May 1961. [29] S. Ritt. (2018). Datasheet: DRS4-Chip. [Online]. Available: https://www.psi.ch/sites/default/files/import/drs/DocumentationEN/DRS4_rev09.pdf [30] M. E. Hammad et al., “Digital pulse processing algorithm for neutron and gamma rays discrimination,” Anal. Integr. Circuits Signal Process.,vol. 101, no. 3, pp. 475–487, Dec. 2019, doi: 10.1007/s10470-019-01498-8. [31] S. D. Ambers, M. Flaska, and S. A. Pozzi, “A hybrid pulse shape discrimination technique with enhanced performance at neutron energies below 500 keV,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 638, no. 1, pp. 116–121, May 2011, doi: 10.1016/j.nima.2011.01.119. [32] R. Koohi-Fayegh, S. Green, N. M. J. Crout, G. C. Taylor, and M. C. Scott, “Neural network unfolding of photon and neutron spectra using an NE-213 scintillation detector,” Nucl. Inst. Methods Phys. Res. A, Accel., Spectrometers, Detectors Associated Equip., vol. 329, nos. 1–2, pp. 269–276, 1993, doi: 10.1016/0168-9002(93)90946-F. [33] Z. Matej, M. Amiri, F. Cvachovec, V. Prenosil, F. Mravec, and Z. Kopecky, “Digital two-parametric processing of the output data from radiation detectors,” Prog. Nucl. Sci. Technol., vol. 4, pp. 670–674, Apr. 2014, doi: 10.15669/pnst.4.670. [34] T. S. Sanderson, C. D. Scott, M. Flaska, J. K. Polack, and S. A. Pozzi, “Machine learning for digital pulse shape discrimination,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec. (NSS/MIC), Oct. 2012, pp. 199–202, doi: 10.1109/NSSMIC.2012.6551092. IEEE IEEE |