Population, Virulence, and Mycotoxin Profile of Fusarium spp. Associated With Basal Rot of Allium spp. in Vietnam
Fusarium basal rot (FBR) is particularly problematic to Allium producers worldwide. In Vietnam, information on the profile of FBR is scarce, even though the presence of Fusarium spp. in Allium plants has long been recorded. In this study, a total of 180 isolates of Fusarium spp. were recovered from...
Đã lưu trong:
Tác giả chính: | |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
The American Phytopathological Society (APS)
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | https://scholar.dlu.edu.vn/handle/123456789/2509 https://doi.org/10.1094/PDIS-08-20-1850-RE |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Thư viện lưu trữ: | Thư viện Trường Đại học Đà Lạt |
---|
id |
oai:scholar.dlu.edu.vn:123456789-2509 |
---|---|
record_format |
dspace |
institution |
Thư viện Trường Đại học Đà Lạt |
collection |
Thư viện số |
language |
English |
topic |
Allium Fusarium basal rot virulence variability LC MS/MS Mycotoxin |
spellingShingle |
Allium Fusarium basal rot virulence variability LC MS/MS Mycotoxin Lê, Dũng Population, Virulence, and Mycotoxin Profile of Fusarium spp. Associated With Basal Rot of Allium spp. in Vietnam |
description |
Fusarium basal rot (FBR) is particularly problematic to Allium producers worldwide. In Vietnam, information on the profile of FBR is scarce, even though the presence of Fusarium spp. in Allium plants has long been recorded. In this study, a total of 180 isolates of Fusarium spp. were recovered from Allium bulbs/plants showing symptoms of FBR in 34 commercial Allium fields around Da Lat, Lam Dong, Vietnam. These isolates were identified to the species level by sequencing the internal transcribed spacer region and the translation elongation factor 1α gene. F. oxysporum was most prevalent (81%) in samples from all locations and Allium varieties, followed by F. solani (15%) and F. proliferatum (4%), which were only found in onion (Allium cepa L.). Pathogenicity tests on onion seedlings (56 isolates) and mini bulbs (10 isolates) indicated that onion can be infected by all of these species but virulence varied greatly between isolates. Moreover, isolates that were virulent on seedlings were sometimes not virulent on bulbs and vice versa, which points to a specialization of isolates for the host phenology. Mycotoxin analyses showed that the highest amounts of beauvericin were detected in seedlings and bulbs infected by F. oxysporum, whereas F. proliferatum was mainly responsible for the presence of fumonisin B1 in bulbs, suggesting a natural occurrence of beauvericin and fumonisin B1 in onions infected by these pathogens. |
format |
Journal article |
author |
Lê, Dũng |
author_facet |
Lê, Dũng |
author_sort |
Lê, Dũng |
title |
Population, Virulence, and Mycotoxin Profile of Fusarium spp. Associated With Basal Rot of Allium spp. in Vietnam |
title_short |
Population, Virulence, and Mycotoxin Profile of Fusarium spp. Associated With Basal Rot of Allium spp. in Vietnam |
title_full |
Population, Virulence, and Mycotoxin Profile of Fusarium spp. Associated With Basal Rot of Allium spp. in Vietnam |
title_fullStr |
Population, Virulence, and Mycotoxin Profile of Fusarium spp. Associated With Basal Rot of Allium spp. in Vietnam |
title_full_unstemmed |
Population, Virulence, and Mycotoxin Profile of Fusarium spp. Associated With Basal Rot of Allium spp. in Vietnam |
title_sort |
population, virulence, and mycotoxin profile of fusarium spp. associated with basal rot of allium spp. in vietnam |
publisher |
The American Phytopathological Society (APS) |
publishDate |
2023 |
url |
https://scholar.dlu.edu.vn/handle/123456789/2509 https://doi.org/10.1094/PDIS-08-20-1850-RE |
_version_ |
1785973143096000512 |
spelling |
oai:scholar.dlu.edu.vn:123456789-25092023-12-13T03:44:34Z Population, Virulence, and Mycotoxin Profile of Fusarium spp. Associated With Basal Rot of Allium spp. in Vietnam Lê, Dũng Allium Fusarium basal rot virulence variability LC MS/MS Mycotoxin Fusarium basal rot (FBR) is particularly problematic to Allium producers worldwide. In Vietnam, information on the profile of FBR is scarce, even though the presence of Fusarium spp. in Allium plants has long been recorded. In this study, a total of 180 isolates of Fusarium spp. were recovered from Allium bulbs/plants showing symptoms of FBR in 34 commercial Allium fields around Da Lat, Lam Dong, Vietnam. These isolates were identified to the species level by sequencing the internal transcribed spacer region and the translation elongation factor 1α gene. F. oxysporum was most prevalent (81%) in samples from all locations and Allium varieties, followed by F. solani (15%) and F. proliferatum (4%), which were only found in onion (Allium cepa L.). Pathogenicity tests on onion seedlings (56 isolates) and mini bulbs (10 isolates) indicated that onion can be infected by all of these species but virulence varied greatly between isolates. Moreover, isolates that were virulent on seedlings were sometimes not virulent on bulbs and vice versa, which points to a specialization of isolates for the host phenology. Mycotoxin analyses showed that the highest amounts of beauvericin were detected in seedlings and bulbs infected by F. oxysporum, whereas F. proliferatum was mainly responsible for the presence of fumonisin B1 in bulbs, suggesting a natural occurrence of beauvericin and fumonisin B1 in onions infected by these pathogens. 105 07 1942--1950 2023-06-10T01:51:28Z 2023-06-10T01:51:28Z 2021 Journal article Bài báo đăng trên tạp chí thuộc ISI, bao gồm book chapter https://scholar.dlu.edu.vn/handle/123456789/2509 https://doi.org/10.1094/PDIS-08-20-1850-RE en Plant Disease Abawi, G. S., and Lorbeer, J. W. 1971. Pathological histology of four onion cultivars infected by Fusarium oxysporum f. sp. cepae. Phytopathology 61:1164-1169. Crossref, Google Scholar Audenaert, K., Van Broeck, R., Bekaert, B., De Witte, F., Heremans, B., Messens, K., Höfte, M., and Haesaert, G. 2009. Fusarium head blight (FHB) in Flanders: Population diversity, inter-species associations and DON contamination in commercial winter wheat varieties. Eur. J. Plant Pathol. 125:445-458. https://doi.org/10.1007/s10658-009-9494-3 Crossref, ISI, Google Scholar Bayraktar, H., Türkkan, M., and Dolar, F. S. 2010. Characterization of Fusarium oxysporum f. sp. cepae from onion in Turkey based on vegetative compatibility and rDNA RFLP analysis. J. Phytopathol. 158:691-697. https://doi.org/10.1111/j.1439-0434.2010.01685.x Crossref, ISI, Google Scholar Boehnke, B., Karlovsky, P., Pfohl, K., Gamliel, A., Isack, Y., and Dehne, H. W. 2015. Identification of different Fusarium spp. in Allium spp. in Germany. Commun. Agric. Appl. Biol. Sci. 80:453-463. Google Scholar Caligiore Gei, P. F. C., Valdez, J. G., Piccolo, R. G., and Galmarini, C. R. 2014. Influence of Fusarium spp. isolate and inoculum density on resistance screening tests in onion. Trop. Plant Pathol. 39:19-27. https://doi.org/10.1590/S1982-56762014005000005 Crossref, ISI, Google Scholar Cramer, C. S. 2000. Breeding and genetics of Fusarium basal rot resistance in onion. Euphytica 115:159-166. https://doi.org/10.1023/A:1004071907642 Crossref, ISI, Google Scholar Dauda, W., Alao, S., Zarafi, A., and Alabi, O. 2018. First report of die-back disease of onion (Allium cepa L.) induced by Fusarium equiseti (Mart) Sacc in Nigeria. Int. J. Plant Soil Sci. 21:1-8. https://doi.org/10.9734/IJPSS/2018/38339 Crossref, Google Scholar Decleer, M. 2017. Occurrence and toxicity of microbial foodborne cyclic depsipeptides: Cereulide, beauvericin and enniatins. Ph.D. thesis, Ghent University, Ghent, Belgium. Google Scholar Delgado-Ortiz, J. C., Ochoa-Fuentes, Y. M., Cerna-Chávez, E., Beltrán-Beache, M., Rodríguez-Guerra, R., Aguirre-Uribe, L. A., and Vázquez-Martínez, O. 2016. Patogenicidad de especies de Fusarium asociadas a la pudrición basal del ajo en el centro norte de México. Rev. Argent. Microbiol. 48:222-228. https://doi.org/10.1016/j.ram.2016.04.003 ISI, Google Scholar Desjardins, A. E., Plattner, R. D., Nelsen, T. C., and Leslie, J. F. 1995. Genetic analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays). Seedlings Appl. Environ. Microbiol. 61:79-86. https://doi.org/10.1128/AEM.61.1.79-86.1995 Crossref, ISI, Google Scholar Dissanayake, M. L. M., Tanaka, S., and Ito, S. I. 2009. Fumonisin B1 production by Fusarium proliferatum strains isolated from Allium fistulosum plants and seeds in Japan. Lett. Appl. Microbiol. 48:598-604. https://doi.org/10.1111/j.1472-765X.2009.02576.x Crossref, ISI, Google Scholar Doehlert, D. C., Knutson, C. A., and Vesonder, R. F. 1994. Phytotoxic effects of fumonisin B1 on maize seedling growth. Mycopathologia 127:117-121. https://doi.org/10.1007/BF01103067 Crossref, ISI, Google Scholar Dugan, F., Hellier, B., and Lupien, S. 2007. Pathogenic fungi in garlic seed cloves from the United States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington State. J. Phytopathol. 155:437-445. https://doi.org/10.1111/j.1439-0434.2007.01255.x Crossref, ISI, Google Scholar Dugan, F. M., Hellier, B. C., and Lupien, S. L. 2003. First report of Fusarium proliferatum causing rot of garlic bulbs in North America. Plant Pathol. 52:426. https://doi.org/10.1046/j.1365-3059.2003.00852.x Crossref, ISI, Google Scholar European Commission. 2002. 2002/657/EC: Commission decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities 221:8-36. Google Scholar Everts, K., and Schwartz, H. 1985. Effects of maggots and wounding on occurrence of Fusarium basal rot of onions in Colorado. Plant Dis. 69:878-882. https://doi.org/10.1094/PD-69-878 Crossref, ISI, Google Scholar Fletcher, J., Gamliel, A., Stack, J. P., Dehne, H. W., Isack, Y., and Moncrief, I. 2017. Applications and assessment of microbial forensics in a field outbreak of salmon blotch of onion in Israel. Pages 257-287 in: Practical tools for plant and food biosecurity. Plant pathology in the 21st century. Vol. 8. M. Gullino, J. Stack, J. Fletcher, and J. Mumford, eds. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-46897-6_13 Crossref, Google Scholar Galeana-Sánchez, E., Sánchez Rangel, D., de la Torre, M., Nájera-Martínez, M., Ramos-Villegas, P., and Plasencia, J. 2017. Fumonisin B1 produced in planta by Fusarium verticillioides is associated with inhibition of maize β-1,3-glucanase activity and increased aggressiveness. Physiol. Mol. Plant Pathol. 100:75-83. https://doi.org/10.1016/j.pmpp.2017.07.003 Crossref, ISI, Google Scholar Galeano, P., Gonzalez, P. H., Fraguas, L. F., and Galvan, G. A. 2014. Age-related resistance to Fusarium oxysporum f. sp. cepae and associated enzymatic changes in seedlings of Allium cepa and A. fistulosum. Trop. Plant Pathol. 39:374-383. https://doi.org/10.1590/S1982-56762014000500004 Crossref, ISI, Google Scholar Galván, G. A., Koning-Boucoiran, C. F. S., Koopman, W. J. M., Burger-Meijer, K., González, P. H., Waalwijk, C., Kik, C., and Scholten, O. E. 2008. Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. Eur. J. Plant Pathol. 121:499-512. https://doi.org/10.1007/s10658-008-9270-9 Crossref, ISI, Google Scholar Gálvez, L., Urbaniak, M., Wáskiewicz, A., Stepien, Ł., and Palmero, D. 2017. Fusarium proliferatum – Causal agent of garlic bulb rot in Spain: Genetic variability and mycotoxin production. Food Microbiol. 67:41-48. https://doi.org/10.1016/j.fm.2017.05.006 Crossref, ISI, Google Scholar Ghanbarzadeh, B., Mohammadi Goltapeh, E., and Safaie, N. 2014. Identification of Fusarium species causing basal rot of onion in East Azerbaijan Province, Iran and evaluation of their virulence on onion bulbs and seedlings. Arch. Phytopathol. Plant Prot. 47:1050-1062. https://doi.org/10.1080/03235408.2013.829628 Crossref, Google Scholar Haapalainen, M., Latvala, S., Kuivainen, E., Qiu, Y., Segerstedt, M., and Hannukkala, A. O. 2016. Fusarium oxysporum, F. proliferatum, and F. redolens associated with basal rot of onion in Finland. Plant Pathol. 65:1310-1320. https://doi.org/10.1111/ppa.12521 Crossref, ISI, Google Scholar Havey, M. J. 1993. Onion: Allium cepa L. Pages 35-49 in: Genetic improvement of vegetable crops. G. Kalloo and B. O. Bergh, eds. Pergamon, Amsterdam, The Netherlands. https://doi.org/10.1016/B978-0-08-040826-2.50008-4 Crossref, Google Scholar Holz, G., and Knox-Davies, P. S. 1974. Resistance of onion selections to Fusarium oxysporum f. sp. cepae. Phytophylactica 6:153-156. Google Scholar Kalman, B., Abraham, D., Graph, S., Perl-Treves, R., Meller Harel, Y., and Degani, O. 2020. Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) basal rot in Northeastern Israel. Biology (Basel) 9:69. https://doi.org/10.3390/biology9040069 Crossref, Google Scholar Kintega, K. R., Zida, P. E., Soalla, R., Tarpaga, V. W., Sankara, P., and Sereme, P. 2020. Determination of Fusarium species associated with onion plants (Allium cepa) in field in Burkina Faso causing damping-off and bulb rots. Am. J. Plant Sci. 11:64-79. https://doi.org/10.4236/ajps.2020.111006 Crossref, Google Scholar Klokocar-Smit, Z. D., Levic, J. T., Masirevic, S. N., Gvozdanovic-Varga, J. M., Vasic, M. A., and Aleksic, S. R. 2008. Fusarium rot of onion and possible use of bioproduct. Prog. Nat. Sci. 114:135-148. https://doi.org/10.2298/ZMSPN0814135K Google Scholar Koike, S. T., Gordon, T. R., and Aegerter, B. J. 2003. Root and basal rot of leek caused by Fusarium culmorum in California. Plant Dis. 87:601-601. Link, ISI, Google Scholar Leach, C. M. 1962. Sporulation of diverse species of fungi under near-ultraviolet radiation. Can. J. Bot. 40:151-161. https://doi.org/10.1139/b62-016 Crossref, Google Scholar Leyronas, C., Duffaud, M., and Nicot, P. C. 2012. Compared efficiency of the isolation methods for Botrytis cinerea. Mycology 3:221-225. Google Scholar Li, C., Zuo, C., Deng, G., Kuang, R., Yang, Q., Hu, C., Sheng, O., Zhang, S., Ma, L., Wei, Y., Yang, J., Liu, S., Biswas, M. K., Viljoen, A., and Yi, G. 2013. Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PLoS One 8:e70226. https://doi.org/10.1371/journal.pone.0070226 Crossref, ISI, Google Scholar Liuzzi, V. C., Mirabelli, V., Cimmarusti, M. T., Haidukowski, M., Leslie, J. F., Logrieco, A. F., Caliandro, R., Fanelli, F., and Mule, G. 2017. Enniatin and beauvericin biosynthesis in Fusarium species: Production profiles and structural determinant prediction. Toxins (Basel) 9:45. https://doi.org/10.3390/toxins9020045 Crossref, ISI, Google Scholar Logrieco, A., Moretti, A., Ritieni, A., Caiaffa, M. F., and Macchia, L. 2002. Beauvericin: Chemistry, biology and significance. Pages 23-30 in: Advances in microbial toxin research and its biotechnological exploitation. R. K. Upadhyay, ed. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4439-2_2 Crossref, Google Scholar Lopez, J. A., and Cramer, C. S. 2004. Screening short-day onion varieties for resistance to Fusarium basal rot. Acta Hortic. 637:169-173. Google Scholar López-Berges, M. S., Hera, C., Sulyok, M., Schafer, K., Capilla, J., Guarro, J., and Di Pietro, A. 2013. The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol. Microbiol. 87:49-65. https://doi.org/10.1111/mmi.12082 Crossref, ISI, Google Scholar Masangkay, R. F., Paulitz, T. C., Hallett, S. G., and Watson, A. K. 2000. Characterization of sporulation of Alternaria alternata f. sp. sphenocleae. Biocontrol Sci. Technol. 10:385-397. https://doi.org/10.1080/09583150050114981 Crossref, ISI, Google Scholar Maude, R. B. 1998. Onion diseases. Pages 404-422 in: The epidemiology of plant diseases. D. G. Jones, ed. Springer, Dordrecht, The Netherlands. Crossref, Google Scholar O’Donnell, K., Cigelnik, E., and Casper, H. H. 1998. Molecular phylogenetic, morphological and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum. Fungal Genet. Biol. 23:57-67. https://doi.org/10.1006/fgbi.1997.1018 Crossref, ISI, Google Scholar Özer, N., Koycu, N. D., Chilosi, G., and Magro, P. 2004. Resistance to Fusarium basal rot of onion in greenhouse and field and associated expression of antifungal compounds. Phytoparasitica 32:388-394. https://doi.org/10.1007/BF02979850 Crossref, ISI, Google Scholar Palmero, D., de Cara, M., Nosir, W., Gálvez, L., Cruz, A., Woodward, S., González-Jaén, M. T., and Tello, J. C. 2012. Fusarium proliferatum isolated from garlic in Spain: Identification, toxigenic potential and pathogenicity on related Allium species. Phytopathol. Mediterr. 51:207-218. ISI, Google Scholar Perincherry, L., Lalak-Kanczugowska, J., and Stepien, L. 2019. Fusarium-produced mycotoxins in plant–pathogen interactions. Toxins (Basel) 11:664. Crossref, ISI, Google Scholar R Core Team. 2019. R: A language and environment for statistical computing, Vienna, Austria. Available at: https://www.R-project.org/. Google Scholar Sagaram, U. S., Kolomiets, M., and Shim, W.-B. 2006. Regulation of fumonisin biosynthesis in Fusarium verticillioides-maize system. Plant Pathol. J. 22:203-210. https://doi.org/10.5423/PPJ.2006.22.3.203 Crossref, Google Scholar Salvalaggio, A. E., and Ridao, A. C. 2013. First report of Fusarium proliferatum causing rot on garlic and onion in Argentina. Plant Dis. 97:556. https://doi.org/10.1094/PDIS-05-12-0507-PDN Link, ISI, Google Scholar Saxena, A., and Cramer, C. S. 2009. Screening of onion seedlings for resistance against New Mexico isolates of Fusarium oxysporum f. sp. cepae. J. Plant Pathol. 91:199-202. ISI, Google Scholar Seefelder, W., Gossmann, M., and Humpf, H. 2002. Analysis of fumonisin B1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography–electrospray ionization mass spectrometry. J. Agric. Food Chem. 50:2778-2781. Crossref, ISI, Google Scholar Shao, C., Xiang, D., Wei, H., Liu, S., Guo, L., Li, C., Lyu, S., and Yi, G. 2020. Predicting virulence of Fusarium oxysporum f. sp. cubense based on the production of mycotoxin using a linear regression model. Toxins (Basel) 12:254. Crossref, ISI, Google Scholar Sintayehu, A., Sakhuja, P. K., Fininsa, C., and Ahmed, S. 2011. Management of Fusarium basal rot (Fusarium oxysporum f. sp. cepae) on shallot through fungicidal bulb treatment. Crop Prot. 30:560-565. https://doi.org/10.1016/j.cropro.2010.12.027 Crossref, ISI, Google Scholar Stankovic, S., Levic, J., Petrovic, T., Logrieco, A., and Moretti, A. 2007. Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur. J. Plant Pathol. 118:165-172. https://doi.org/10.1007/s10658-007-9126-8 Crossref, ISI, Google Scholar Stępień, Ł., Koczyk, G., and Waśkiewicz, A. 2011. Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J. Appl. Genet. 52:487-496. https://doi.org/10.1007/s13353-011-0059-8 Crossref, ISI, Google Scholar Sun, L., Chen, X., Gao, J., Zhao, Y., Liu, L., Hou, Y., Wang, L., and Huang, S. 2019. Effects of disruption of five FUM genes on fumonisin biosynthesis and pathogenicity in Fusarium proliferatum. Toxins (Basel) 11:327. https://doi.org/10.3390/toxins11060327 Crossref, ISI, Google Scholar Swamy, K. R. M., and Veere Gowda, R. 2006. Leek and shallot. Pages 365-389 in: Handbook of herbs and spices. K. V. Peter, ed. Woodhead Publishing, Cambridge, UK. https://doi.org/10.1533/9781845691717.3.365 Crossref, Google Scholar Taylor, A., Vágány, V., Jackson, A. C., Harrison, R. J., Rainoni, A., and Clarkson, J. P. 2016. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Mol. Plant Pathol. 17:1032-1047. https://doi.org/10.1111/mpp.12346 Crossref, ISI, Google Scholar Toit, L. J., Inglis, D. A., and Pelter, G. Q. 2003. Fusarium proliferatum pathogenic on onion bulbs in Washington. Plant Dis. 87:750. https://doi.org/10.1094/PDIS.2003.87.6.750A Link, ISI, Google Scholar Tonti, S., Mandrioli, M., Nipoti, P., Pisi, A., Gallina Toschi, T., and Prodi, A. 2017. Detection of fumonisins in fresh and dehydrated commercial garlic. J. Agric. Food Chem. 65:7000-7005. https://doi.org/10.1021/acs.jafc.7b02758 Crossref, ISI, Google Scholar Wang, A., Islam, M. N., Johansen, A., Haapalainen, M., Latvala, S., and Edelenbos, M. 2019. Pathogenic Fusarium oxysporum f. sp. cepae growing inside onion bulbs emits volatile organic compounds that correlate with the extent of infection. Postharvest Biol. Technol. 152:19-28. https://doi.org/10.1016/j.postharvbio.2019.02.010 Crossref, ISI, Google Scholar Waśkiewicz, A., Stepien, L., Wilman, K., and Kachlicki, P. 2013. Diversity of pea-associated F. proliferatum and F. verticillioides populations revealed by FUM1 sequence analysis and fumonisin biosynthesis. Toxins (Basel) 5:488-503. https://doi.org/10.3390/toxins5030488 Crossref, ISI, Google Scholar White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315-322 in: PCR protocols: A guide to methods and applications. M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, eds. Academic Press, New York, NY. Crossref, Google Scholar Yamagishi, D., Akamatsu, H., Otani, H., and Kodama, M. 2006. Pathological evaluation of host-specific AAL-toxins and fumonisin mycotoxins produced by Alternaria and Fusarium species. J. Gen. Plant Pathol. 72:323-327. https://doi.org/10.1007/s10327-006-0291-y Crossref, Google Scholar The American Phytopathological Society (APS) USA |