A Data Integration Approach for Detecting Biomarkers of Breast Cancer Survivability

We introduce a network-based approach to identify subnets of functionally-related genes for predicting 5-year survivability of breast cancer patients treated with chemotherapy, hormone therapy, and a combination of these. A gene expression dataset and a protein-protein interaction network are integr...

সম্পূর্ণ বিবরণ

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Phạm, Quang Huy, Alioune Ngom, Luis Rueda
বিন্যাস: Conference paper
ভাষা:English
প্রকাশিত: Springer 2023
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://scholar.dlu.edu.vn/handle/123456789/2695
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
Thư viện lưu trữ: Thư viện Trường Đại học Đà Lạt
বিবরন
সংক্ষিপ্ত:We introduce a network-based approach to identify subnets of functionally-related genes for predicting 5-year survivability of breast cancer patients treated with chemotherapy, hormone therapy, and a combination of these. A gene expression dataset and a protein-protein interaction network are integrated to construct a weighted graph, where edge weight expresses the predictability of the two corresponding genes in predicting the class. We propose a scoring criterion to measure the density of a weighted sub-graph, which is also an estimation of its predictive power. Thus, we can identify an optimally-dense sub-network for each seed gene, and then evaluate that sub-network by classification method. Finally, among the sub-networks whose classification performance greater than a given threshold, we search for an optimal set of sub-networks that can further improve classification performance via a voting scheme. We significantly improved the results of existing approaches. For each type of treatment, our best prediction model can reach 85% accuracy or more. Many selected sub-networks used to construct the voting models contain breast/other cancer-related genes including SP1, TP53, MYC, NOG, and many more, providing pieces of evidence for down-stream analysis.